Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

AMP—See Adenosine 5 -monophosphate

Nucleotides are named by adding a term denoting the number of phasphate groups (and their position) to the name of the nucleoside e.g. adenosine 5-monophosphate, AMP (or adenylate). In general, nucleotides are assumed to be ribonucleotides unless the prefix deoxy (or d- as abbreviation) is used. (See Figures 20.5 and 20.6)... [Pg.455]

Glycogen phosphorylase b control solution (2 units/ml in 60 mM AMP)—Dilute the 1000-units/ml enzyme stock solution (see above) 1 500 in 40 mM glycerophosphate containing 60 mM AMP. This solution is prepared by dissolving 2.08 g of adenosine 5 -monophosphate (monosodium salt) in 100 ml of 40 mM glycerophosphate, pH 6.8. [Pg.425]

Adenosine 5 -monophosphate (AMP) is synthesized de novo from inosinic add (see Purine biosynthesis) and also arises in reactions in which pyrophosphate and AMP are formed from adenosine triphosphate (e.g. in the synthesis of aminoacyl-tRNA). [Pg.13]

The chemistry of phosphate esters is rich and varied. Phosphate esters are important in biological systems. The phosphate ester of a nucleoside (a nucle-obase attached to a ribose derivative see Chapter 28, Section 28.5) is called a nucleotide. These are structural components used in DNA and RNA. Using adenosine (210) as an example, there are three possible monophosphate esters 211, 212, and 212. The pyrophosphate (diphosphate) derivative is adenosine 5 -diphosphate (214). The symbol A is used to designate an adenosine derivative in biology, so 211 is abbreviated 5 -AMP (adenosine 5 -monophosphate) and 214 is 5 -ADP (adenosine 5 -diphosphate). The numbering is explained in Chapter 28, Section 28.5. [Pg.991]

Figure 10 Chemical structures of adenosine 5 -monophosphate (n = 1 AMP ), adenosine 5 -diphosphate (n = 2 ADP "), and adenosine 5 -triphosphate (n = 3 ATP ) as well as of cytidine 5 -monophosphate (n = 1 CMP, cytidine 5 -diphosphate (n = 2 CDP ), and cytidine 5 -triphosphate (n = 3 CTP ) in their dominating anti conformation [11-14,50]. Note, the triphosphate chain in nucleoside 5 -triphosphates (NTP ) is labeled a, P, and y, where y refers to the terminal phosphate group (see also Figure 9) for nucleoside 5 -diphosphates (NDP ) the situation is analogous with a and P (see Figure 9). The adenine and cytosine residues in the nucleotide structures shown above may be replaced by one of the other nucleobase residues shown in Figiue 1 if this substitution is done in the way the bases are depicted within the plane (Figure 1), then the anti conformation will also result for the corresponding nucleoside 5 -phosphates. The abbreviations AMP, ADP , ATP , IMP, etc. in this text always represent the 5 -derivatives 2 - and 3 -derivatives are defined by 2 AMP, 3 AMP, etc. in a few instances where uncertainties might otherwise occur, the abbreviations 5 AMP , 5 ADP , etc. are also used. Figure 10 Chemical structures of adenosine 5 -monophosphate (n = 1 AMP ), adenosine 5 -diphosphate (n = 2 ADP "), and adenosine 5 -triphosphate (n = 3 ATP ) as well as of cytidine 5 -monophosphate (n = 1 CMP, cytidine 5 -diphosphate (n = 2 CDP ), and cytidine 5 -triphosphate (n = 3 CTP ) in their dominating anti conformation [11-14,50]. Note, the triphosphate chain in nucleoside 5 -triphosphates (NTP ) is labeled a, P, and y, where y refers to the terminal phosphate group (see also Figure 9) for nucleoside 5 -diphosphates (NDP ) the situation is analogous with a and P (see Figure 9). The adenine and cytosine residues in the nucleotide structures shown above may be replaced by one of the other nucleobase residues shown in Figiue 1 if this substitution is done in the way the bases are depicted within the plane (Figure 1), then the anti conformation will also result for the corresponding nucleoside 5 -phosphates. The abbreviations AMP, ADP , ATP , IMP, etc. in this text always represent the 5 -derivatives 2 - and 3 -derivatives are defined by 2 AMP, 3 AMP, etc. in a few instances where uncertainties might otherwise occur, the abbreviations 5 AMP , 5 ADP , etc. are also used.
If MLCK activates contraction by increasing myosin phosphorylation, then an increase in the activity of myosin light chain phosphatase, MLCP, by decreasing the fraction of myosin which is phosphorylated, should lead to relaxation from the active (contractile) state. Cyclic adenosine monophosphate (AMP) is a strong inhibitor of smooth muscle contraction and it has been suggested that activation of MLCP could result from its phosphorylation via cAMP activated protein kinase (see Figure 5). [Pg.175]

Adenosine 5 -phosphate. See AMP Adenosine diphosphate. See ADP Adenosine monophosphate. See AMP Adenosine triphosphate. See ATP Adenosine-diphosphate-ribose. See ADP-ribose... [Pg.906]

Adenylic Acid. Muscle adenylic acid ergaden -ylic acid t -adenylic acid adenosine S -monophosphate adenosine phosphate adenosine-5 -phosphoric add edeno-sine-5. monophosphoric acid A5MP AMP NSC-20264 Addiyl Cardiomone (Na salt) Lycedan My -B-Den My-oston Phosaden. C,0HhNjO7P mol wt 347.23, C 34.59%, H 4.06%, N 20.17%, O 32,25%, P 8,92%. Nucleotide widely distributed in nature. Prepn from tissues Embden, Zimmerman, Z. Physrot Chem. 167, 137 (1927) Embden, Schmidt, ibid. 181, 130 (1929) cf. Kalckar, J. B.ol Chem. 167, 445 (1947). Prepn by hydrolysis of ATP with barium hydroxide Kerr, 3. Biot Chem. 139, 13l (1941). Synthesis Baddiley, Todd. 3. Chem. Soc. 1947, 648. Commercial prepn by enzymatic phosphorylation of adenosine. Monograph on synthesis of nucleotides G. R. Pettit. Synthetic Nucleotides vol, 1 (Van Nostrand-Reinhold. New York, 1972) 252 pp. Crystal structure Kraut, lensen, Acta Cryst 16, 79 (1963). Reviews see Adenosine Nucleic Acids. [Pg.26]

Abbreviations used NAD+ = nicotinamide adenine dinucleotide NADH e reduced nicotinamide adenine dinucleotide NADP = nicotinamide adenine dinudeotide phosphate NAD PH reduced nicotinamide adenine dinucleotide phosphate NMN, NMN+ nicotinamide mononucleotide NMNH2 = reduced nicotinamide mononucleotide a-NAD a-nicotinamide adenine dinucleotide AMP = 5 -adenylic acid 3,5 -AMP adenosine 3, 5 -cycIic phosphate 3 ,5 -UMP = uridine 3, 5 -cyclic phosphate 3, 5 -CMP cytidine 3, 5-cyclic phosphate 3 f5 GMP = guanosine 3 5f-cyclic phosphate 3, 5 TMP thymidine 3, 5 -cyclic phosphate Dibutyryl-3, 5 -AMP = N6,02-dibutyryladenosine 3, 5 -cyclic phosphate 2, 3 -UMP = uridine 2 ,3 -cyclic monophosphate 2, 3 -CMP cytidine 2, 3 -cyclic monophosphate 2, 3 -AMP = adenosine 2, 3 -cyclic monophosphate 2 ,3 -GMP = guanosine 2 3 -cyclic monophosphate 2 -UMP = uridine 2 -phosphate -UMP uridine -phosphate 5 -UMP = uridine 5 phosphate Poly U polyuridylic acid ADP = adenosine 5 -diphosphate FAD = flavin adenine dinucleotide UpA, UpU, ApU and ApA x dinucleoside phosphates of uridine and/or adenine. c See original references for experimental conditions and additional data. [Pg.337]

AMP acronym of cyclic adenosine-3, 5 -monophosphate. See Adenosine phosphates. [Pg.39]


See other pages where AMP—See Adenosine 5 -monophosphate is mentioned: [Pg.1215]    [Pg.1215]    [Pg.15]    [Pg.394]    [Pg.297]    [Pg.39]    [Pg.638]    [Pg.912]    [Pg.338]    [Pg.666]    [Pg.152]    [Pg.422]    [Pg.217]    [Pg.86]    [Pg.74]    [Pg.15]   


SEARCH



5 -AMP

Adenosine 5 monophosphate

Adenosine monophosphate-AMP

© 2024 chempedia.info