Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amorphous treatments

Sodium Poly(4-styrene sulfonate). The sol—gel processing of TMOS in the presence of sodium poly-4-styrene sulfonate (NaPSS) has been used to synthesize inorganic—organic amorphous complexes (61). These sodium siUcate materials were then isotherm ally crystallized. The processing pH, with respect to the isoelectric point of amorphous siUca, was shown to influence the morphology of the initial gel stmctures. Using x-ray diffraction, the crystallization temperatures were monitored and were found to depend on these initial microstmctures. This was explained in terms of the electrostatic interaction between the evolving siUcate stmctures and the NaPSS prior to heat treatment at elevated temperatures. [Pg.330]

Ion implantation (qv) has a large (10 K/s) effective quench rate (64). This surface treatment technique allows a wide variety of atomic species to be introduced into the surface. Sputtering and evaporation methods are other very slow approaches to making amorphous films, atom by atom. The processes involve deposition of a vapor onto a cold substrate. The buildup rate (20 p.m/h) is also sensitive to deposition conditions, including the presence of impurity atoms which can faciUtate the formation of an amorphous stmcture. An approach used for metal—metalloid amorphous alloys is chemical deposition and electro deposition. [Pg.337]

Stannous Oxide Hydrate. Stannous oxide hydrate [12026-24-3] SnO H2O (sometimes erroneously called stannous hydroxide or stannous acid), mol wt 152.7, is obtained as a white amorphous crystalline product on treatment of stannous chloride solutions with alkaH. It dissolves in alkaH solutions, forming stannites. The stannite solutions, which decompose readily to alkaH-metal stannates and tin, have been used industrially for immersion tinning. [Pg.65]

Extrusion Resins. Extmsion of VDC—VC copolymers is the main fabrication technique for filaments, films, rods, and tubing or pipe, and involves the same concerns for thermal degradation, streamlined flow, and noncatalytic materials of constmction as described for injection-molding resins (84,122). The plastic leaves the extmsion die in a completely amorphous condition and is maintained in this state by quenching in a water bath to about 10°C, thereby inhibiting recrystallization. In this state, the plastic is soft, weak, and pHable. If it is allowed to remain at room temperature, it hardens gradually and recrystallizes partially at a slow rate with a random crystal arrangement. Heat treatment can be used to recrystallize at controlled rates. [Pg.441]

Treatment of ceUulose with acids results in preferential hydrolysis in the more accessible amorphous regions and produces a product known as microcrystalline ceUulose (MCC). MCC is used to prepare fat-free or reduced-fat food products, to strengthen and stabilize food foams, as a tableting aid, and as a noncalotic bulking agent for dietetic foods. It has GRAS status. [Pg.484]

After preparing a homogeneous solution of the precursors, powder precipitation is accompHshed through the addition of at least one complexing ion. For PLZT, frequently OH in the form of ammonium hydroxide is added as the complexing anion, which results in the formation of an amorphous, insoluble PLZT-hydroxide. Other complexing species that are commonly used are carbonate and oxalate anions. CO2 gas is used to form carbonates. Irrespective of the complexing anion, the precipitated powders are eventually converted to the desired crystalline oxide phase by low temperature heat treatment. [Pg.346]

Solution Deposition of Thin Films. Chemical methods of preparation may also be used for the fabrication of ceramic thin films (qv). MetaHo-organic precursors, notably metal alkoxides (see Alkoxides, metal) and metal carboxylates, are most frequently used for film preparation by sol-gel or metallo-organic decomposition (MOD) solution deposition processes (see Sol-GEL technology). These methods involve dissolution of the precursors in a mutual solvent control of solution characteristics such as viscosity and concentration, film deposition by spin-casting or dip-coating, and heat treatment to remove volatile organic species and induce crystaHhation of the as-deposited amorphous film into the desired stmcture. [Pg.346]

Following wet processing, fine particle size kaolins may be calcined, ie, heat treated at about 1000°C. This treatment converts the kaolin to an amorphous pigment of significantly higher brightness and opacity (8). Properties of the various types of kaolins used in paper are shown in Table 2. [Pg.206]

If 8j and 82 are identical then AH will be zero and so AF is bound to be negative and the compounds will mix. Thus the intuitive arguments put forward in Section 5.3 concerning the solubility of amorphous polymers can be seen to be consistent with thermodynamical treatment. The above discussion is, at best, an oversimplification of thermodynamics, particularly as applied to solubility. Further information may be obtained from a number of authoritative sources." ... [Pg.94]

All of the eommereial alkyl eyanoaerylate monomers are low-viseosity liquids, and for some applications this can be an advantage. However, there are instances where a viseous liquid or a gel adhesive would be preferred, sueh as for application to a vertical surface or on porous substrates. A variety of viscosity control agents, depending upon the desired properties, have been added to increase the viscosity of instant adhesives [21]. The materials, which have been utilized, include polymethyl methacrylate, hydrophobic silica, hydrophobic alumina, treated quartz, polyethyl cyanoacrylate, cellulose esters, polycarbonates, and carbon black. For example, the addition of 5-10% of amorphous, non-crystalline, fumed silica to ethyl cyanoacrylate changes the monomer viscosity from a 2-cps liquid to a gelled material [22]. Because of the sensitivity of cyanoacrylate esters to basic materials, some additives require treatment with an acid to prevent premature gelation of the product. [Pg.856]

Defects in arc-grown nanotubes place limitations on their utility. Since defects appear to arise predominantly due to sintering of adjacent nanotubes in the high temperature of the arc, it seemed sensible to try to reduce the extent of sintering by cooling the cathode better[2]. The most vivid assay for the extent of sintering is the oxidative heat purification treatment of Ebbesen and coworkers[7], in which amorphous carbon and shorter nanoparticles are etched away before nanotubes are substantially shortened. Since, as we proposed, most of the nanoparticle impurities orig-... [Pg.11]


See other pages where Amorphous treatments is mentioned: [Pg.63]    [Pg.384]    [Pg.298]    [Pg.180]    [Pg.397]    [Pg.142]    [Pg.367]    [Pg.377]    [Pg.248]    [Pg.257]    [Pg.295]    [Pg.444]    [Pg.155]    [Pg.523]    [Pg.250]    [Pg.56]    [Pg.504]    [Pg.21]    [Pg.256]    [Pg.340]    [Pg.344]    [Pg.266]    [Pg.433]    [Pg.35]    [Pg.261]    [Pg.275]    [Pg.566]    [Pg.78]    [Pg.211]    [Pg.190]    [Pg.318]    [Pg.961]    [Pg.6]    [Pg.7]    [Pg.24]    [Pg.106]    [Pg.109]    [Pg.129]    [Pg.219]    [Pg.320]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Amorphous Carbon Treatment

Amorphous Carbon Treatment Internal Surface

Amorphous Carbon Treatment on Internal

Amorphous heat treatment

© 2024 chempedia.info