Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids coenzyme requirements

This is followed by removal of the glutamic acid and the glycine residues, which is followed by acetylation of the remaining cysteine. Essential amino acids are required for the synthesis of the proteins involved, pantothenic acid for coenzyme A synthesis, and phosphorus for synthesis of the ATP needed for glutathione synthesis. Similar scenarios can be developed for glucuronide and sulfate formation, acetylation, and other phase II reaction systems. [Pg.166]

Amino acid metabolism requires the participation of three important cofactors. Pyridoxal phosphate is the quintessential coenzyme of amino acid metabolism (see Chapter 38). All amino acid reactions requiring pyridoxal phosphate occur with the amino group of the amino acid covalently bound to the aldehyde carbon of the coenzyme (Fig. 39.3). The pyridoxal phosphate then pulls electrons away from the bonds around the a-carbon. The result is transamination, deamination, decarboxylation, P-elimination, racemization, and -elimination, depending on which enzyme and amino acid are involved. [Pg.715]

Homocysteine methyl transferase, an enzyme required for the synthesis of methionine (an amino acid), also requires a THF-coenzyme. [Pg.1160]

Since the generation of H2O2 is frequently associated with flavoprotein oxidations, it was proposed that the enzyme contained a flavin-coenzyme. Keilin and Hartree were able to activate n-amino acid oxidase requiring FAD by the addition of boiled notatin, thus demonstrating the presence of this coenzyme in the enzyme. The enzyme has been considerably purified. It has a molecular weight of 152,000 and appears to have two prosthetic groups of FAD per molecule of protein. > ... [Pg.188]

Riboflavin was first isolated from whey in 1879 by Blyth, and the structure was determined by Kuhn and coworkers in 1933. For the structure determination, this group isolated 30 mg of pure riboflavin from the whites of about 10,000 eggs. The discovery of the actions of riboflavin in biological systems arose from the work of Otto Warburg in Germany and Hugo Theorell in Sweden, both of whom identified yellow substances bound to a yeast enzyme involved in the oxidation of pyridine nucleotides. Theorell showed that riboflavin 5 -phosphate was the source of the yellow color in this old yellow enzyme. By 1938, Warburg had identified FAD, the second common form of riboflavin, as the coenzyme in D-amino acid oxidase, another yellow protein. Riboflavin deficiencies are not at all common. Humans require only about 2 mg per day, and the vitamin is prevalent in many foods. This vitamin... [Pg.592]

This thiol-disulfide interconversion is a key part of numerous biological processes. WeTJ see in Chapter 26, for instance, that disulfide formation is involved in defining the structure and three-dimensional conformations of proteins, where disulfide "bridges" often form cross-links between q steine amino acid units in the protein chains. Disulfide formation is also involved in the process by which cells protect themselves from oxidative degradation. A cellular component called glutathione removes potentially harmful oxidants and is itself oxidized to glutathione disulfide in the process. Reduction back to the thiol requires the coenzyme flavin adenine dinucleotide (reduced), abbreviated FADH2. [Pg.668]

Six compounds have vitamin Bg activity (Figure 45-12) pyridoxine, pyridoxal, pyridoxamine, and their b -phosphates. The active coenzyme is pyridoxal 5 -phos-phate. Approximately 80% of the body s total vitamin Bg is present as pyridoxal phosphate in muscle, mostly associated with glycogen phosphorylase. This is not available in Bg deficiency but is released in starvation, when glycogen reserves become depleted, and is then available, especially in liver and kidney, to meet increased requirement for gluconeogenesis from amino acids. [Pg.491]

In mammals and in the majority of bacteria, cobalamin regulates DNA synthesis indirectly through its effect on a step in folate metabolism, catalyzing the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate via two methyl transfer reactions. This cytoplasmic reaction is catalyzed by methionine synthase (5-methyltetrahydrofolate-homocysteine methyl-transferase), which requires methyl cobalamin (MeCbl) (253), one of the two known coenzyme forms of the complex, as its cofactor. 5 -Deoxyadenosyl cobalamin (AdoCbl) (254), the other coenzyme form of cobalamin, occurs within mitochondria. This compound is a cofactor for the enzyme methylmalonyl-CoA mutase, which is responsible for the conversion of T-methylmalonyl CoA to succinyl CoA. This reaction is involved in the metabolism of odd chain fatty acids via propionic acid, as well as amino acids isoleucine, methionine, threonine, and valine. [Pg.100]

Dopamine synthesis in dopaminergic terminals (Fig. 46-3) requires tyrosine hydroxylase (TH) which, in the presence of iron and tetrahydropteridine, oxidizes tyrosine to 3,4-dihydroxyphenylalanine (levodopa.l-DOPA). Levodopa is decarboxylated to dopamine by aromatic amino acid decarboxylase (AADC), an enzyme which requires pyri-doxyl phosphate as a coenzyme (see also in Ch. 12). [Pg.765]

Vitamin Ba (pyridoxine, pyridoxal, pyridoxamine) like nicotinic acid is a pyridine derivative. Its phosphorylated form is the coenzyme in enzymes that decarboxylate amino acids, e.g., tyrosine, arginine, glycine, glutamic acid, and dihydroxyphenylalanine. Vitamin B participates as coenzyme in various transaminations. It also functions in the conversion of tryptophan to nicotinic acid and amide. It is generally concerned with protein metabolism, e.g., the vitamin B8 requirement is increased in rats during increased protein intake. Vitamin B6 is also involved in the formation of unsaturated fatty acids. [Pg.212]

Glutamate dehydrogenase, the enzyme responsible for the liberation of ammonia from amino acids, occurs in two forms one (cytosolic) is nicotinamide adenine dinucleotide (NAD+) dependent whilst the other (mitochondrial) requires NADP+ as coenzyme. [Pg.177]

Pyridoxal phosphate is a required coenzyme for many enzyme-catalyzed reactions. Most of these reactions are associated with the metabolism of amino acids, including the decarboxylation reactions involved in the synthesis of the neurotransmitters dopamine and serotonin. In addition, pyridoxal phosphate is required for a key step in the synthesis of porphyrins, including the heme group that is an essential player in the transport of molecular oxygen by hemoglobin. Finally, pyridoxal phosphate-dependent reactions link amino acid metabolism to the citric acid cycle (chapter 16). [Pg.203]

Glutamate can then participate in the formation of other amino acids via the process called transamination. Transamination is the exchange of the amino group from an amino acid to a keto acid, and provides the most common process for the introduction of nitrogen into amino acids, and for the removal of nitrogen from them. The reaction is catalysed by a transaminase enzyme, and the coenzyme pyridoxal phosphate (PLP) is required. [Pg.598]

The active form of vitamin Be, pyridoxai phosphate, is the most important coenzyme in the amino acid metabolism (see p. 106). Almost all conversion reactions involving amino acids require pyridoxal phosphate, including transaminations, decarboxylations, dehydrogenations, etc. Glycogen phosphory-lase, the enzyme for glycogen degradation, also contains pyridoxal phosphate as a cofactor. Vitamin Be deficiency is rare. [Pg.368]

Both sulfonamides and trimethoprim (not a sulfonamide) sequentially interfere with folic acid synthesis by bacteria. Folic acid functions as a coenzyme in the transfer of one-carbon units required for the synthesis of thymidine, purines, and some amino acids and consists of three components a pteridine moiety, PABA, and glutamate (Fig. 44.1). The sulfonamides, as structural analogues, competitively block PABA incorporation sulfonamides inhibit the enzyme dihydropteroate synthase, which is necessary for PABA to be incorporated into dihydropteroic acid, an intermediate compound in the formation of folinic acid. Since the sulfonamides reversibly block the synthesis of folic acid, they are bacteriostatic drugs. Humans cannot synthesize folic acid and must acquire it in the diet thus, the sulfonamides selectively inhibit microbial growth. [Pg.516]

The first examples of mechanism must be divided into two principal classes the chemistry of enzymes that require coenzymes, and that of enzymes without cofactors. The first class includes the enzymes of amino-acid metabolism that use pyridoxal phosphate, the oxidation-reduction enzymes that require nicotinamide adenine dinucleotides for activity, and enzymes that require thiamin or biotin. The second class includes the serine esterases and peptidases, some enzymes of sugar metabolism, enzymes that function by way of enamines as intermediates, and ribonuclease. An understanding of the mechanisms for all of these was well underway, although not completed, before 1963. [Pg.3]

Pyridoxal phosphate is the coenzyme for the enzymic processes of transamination, racemization and decarboxylation of amino-acids, and for several other processes, such as the dehydration of serine and the synthesis of tryptophan that involve amino-acids (Braunstein, 1960). Pyridoxal itself is one of the three active forms of vitamin B6 (Rosenberg, 1945), and its biochemistry was established by 1939, in considerable part by the work of A. E. Braunstein and coworkers in Moscow (Braunstein and Kritzmann, 1947a,b,c Konikova et al 1947). Further, the requirement for the coenzyme by many of the enzymes of amino-acid metabolism had been confirmed by 1945. In addition, at that time, E. E. Snell demonstrated a model reaction (1) for transamination between pyridoxal [1] and glutamic acid, work which certainly carried with it the implication of mechanism (Snell, 1945). [Pg.4]

Enzymes, like other proteins, have molecular weights ranging from about 12,000 to more than 1 million. Some enzymes require no chemical groups for activity other than their amino acid residues. Others require an additional chemical component called a cofactor—either one or more inorganic ions, such as Fe2+, Mg2+, Mn2+, or Zn2+ (Table 6-1), or a complex organic or metalloorganic molecule called a coenzyme (Table 6-2). Some enzymes require both a coenzyme... [Pg.191]

Eugene Kennedy and Albert Lehninger showed in 1948 that, in eulcaiyotes, the entire set of reactions of the citric acid cycle takes place in mitochondria. Isolated mitochondria were found to contain not only all the enzymes and coenzymes required for the citric acid cycle, but also all the enzymes and proteins necessaiy for the last stage of respiration—electron transfer and ATP synthesis by oxidative phosphoiylation. As we shall see in later chapters, mitochondria also contain the enzymes for the oxidation of fatty acids and some amino acids to acetyl-CoA, and the oxidative degradation of other amino acids to a-ketoglutarate, succinyl-CoA, or oxaloacetate. Thus, in nonphotosynthetic eulcaiyotes, the mitochondrion is the site of most energy-yielding... [Pg.606]

An early step in the catabolism of amino acids is the separation of the amino group from the carbon skeleton. In most cases, the amino group is transferred to a-ketoglutarate to form glutamate. This transamination reaction requires the coenzyme pyridoxal phosphate. [Pg.665]

Matrix of the mitochondrion This gel-like solution in the interior of mitochondria is fifty percent protein. These molecules include the enzymes responsible for the oxidation of pyruvate, amino acids, fatty acids (by p-oxidation), and those of the tricarboxylic acid (TCA) cycle. The synthesis of urea and heme occur partially in the matrix of mitochondria. In addition, the matrix contains NAD+and FAD (the oxidized forms of the two coenzymes that are required as hydrogen acceptors) and ADP and Pj, which are used to produce ATP. [Note The matrix also contains mitochondrial RNA and DNA (mtRNA and mtDNA) and mitochondrial ribosomes.]... [Pg.74]

Formation of S-aminolevulinic acid (ALA) All the carbon and nitrogen atoms of the porphyrin molecule are provided by two simple building blocks glycine (a nonessential amino acid) and succinyl CoA (an intermediate in the citric acid cycle). Glycine and succinyl CoA condense to form ALA in a reaction catalyzed by ALA synthase (Figure 21.3) This reaction requires pyridoxal phosphate as a coenzyme, and is the rate-controlling step in hepatic porphyrin biosynthesis. [Pg.276]

Amino groups are tunneled to glutamate from all amino acids except lysine and threonine. The enzymes are aminotransferases, and they are reversible. The two most important of these enzymes are alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Aminotransferases require pyridoxal phosphate as a coenzyme. The presence of elevated levels of aminotransferases in the plasma can be used to diagnose liver disease. [Pg.491]

In a rare autosomal recessive condition (discovered in 1954) the urine and perspiration has a maple syrup odor/ High concentrations of the branched-chain 2-oxoacids formed by transamination of valine, leucine, and isoleucine are present, and the odor arises from decomposition products of these acids. The branched-chain amino acids as well as the related alcohols also accumulate in the blood and are found in the urine. The biochemical defect lies in the enzyme catalyzing oxidative decarboxylation of the oxoacids, as is indicated in Fig. 24-18. Insertions, deletions, and substitutions may be present in any of the subunits (Figs. 15-14,15-15). The disease which may affect one person in 200,000, is usually fatal in early childhood if untreated. Children suffer seizures, mental retardation, and coma. They may survive on a low-protein (gelatin) diet supplemented with essential amino acids, but treatment is difficult and a sudden relapse is apt to prove fatal. Some patients respond to administration of thiamin at 20 times the normal daily requirement. The branched-chain oxoacid dehydrogenase from some of these children shows a reduced affinity for the essential coenzyme thiamin diphosphate.d... [Pg.1394]

Thiamine, biotin and pyridoxine (vitamin B) coenzymes are grouped together because they catalyze similar phenomena, i.e., the removal of a carboxyl group, COOH, from a metabolite. However, each requires different specific circumstances. Thiamine coenzyme decarboxylates only alpha-keto acids, is frequently accompanied by dehydrogenation, and is mainly associated with carbohydrate metabolism. Biotin enzymes do not require the alpha-keto configuration, are readily reversible, and are concerned primarily with lipid metabolism. Pyridoxine coenzymes perform nonoxidative decarboxylation and are closely allied with amino acid metabolism. [Pg.413]

Pyridoxal-5 -Phosphate Is Required for a Variety of Reactions with a-Amino Acids Nicotinamide Coenzymes Are Used in Reactions Involving Hydride Transfers Flavins Arq Used in Reactions Involving One or Two Electron Transfers... [Pg.198]


See other pages where Amino acids coenzyme requirements is mentioned: [Pg.241]    [Pg.279]    [Pg.586]    [Pg.456]    [Pg.155]    [Pg.167]    [Pg.164]    [Pg.447]    [Pg.36]    [Pg.217]    [Pg.78]    [Pg.13]    [Pg.29]    [Pg.31]    [Pg.356]    [Pg.135]    [Pg.107]    [Pg.110]    [Pg.204]    [Pg.248]    [Pg.268]    [Pg.248]    [Pg.427]    [Pg.545]    [Pg.875]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Amino acids requirements

© 2024 chempedia.info