Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acid Maillard

The initial Schiff base is digestible but after the Amadori rearrangement, the products are not metabolically available. Since lysine is the amino acid most likely to be involved and is an essential amino acid, Maillard browning reduces the biological value of proteins. Interaction of lysine with lactose renders the adjacent peptide bond resistant to hydrolysis by trypsin, thereby reducing the digestibility of the protein. [Pg.276]

The most efficient method for the clean hydrolysis of sucrose is by the use of invertase, leading to an equimolar mixture of glucose and fructose (invert sugar). The presence of salts increases the rate of thermal degradation of sucrose.337 The reaction is also possible in the presence of such heterogeneous acidic catalysts as zeolites.338 The hydrolysis of the glycosidic bond is the first step of a number of subsequent reactions that can occur on the glucose and fructose residues, such as dehydrations, combinations with amino acids (Maillard reaction), and many other chemicals or fermentation processes.339... [Pg.256]

Carbohydrate-Amino Acid (Maillard or Browning Reaction)... [Pg.320]

Figure 2. Inhibition of the antibody binding by Maillaid reaction products of lactose with some amino acids. The lactose-amino acid Maillard products were used as competitors against binding of the monoclonal antibody LlOl to lactose-protein Maillard products. Figure 2. Inhibition of the antibody binding by Maillaid reaction products of lactose with some amino acids. The lactose-amino acid Maillard products were used as competitors against binding of the monoclonal antibody LlOl to lactose-protein Maillard products.
In a less straightforward way, D-glucose (393) underwent a Maillard-type reaction with an excess of glycine (394) under microwave irradiation to afford 5-hydroxy-l,3-dimethyl-2(l/f)-quinoxahnone (395) as a major product, Repetition with labeled reactants suggested that the product contained six carbon atoms from the sugar and four from the amino acid on this evidence, a detailed mechanism has been postulated. [Pg.53]

Monosaccharides are probably involved in the browning reactions that occur during the roasting of coffee. Caramelization involving the sugars alone, and Maillard reactions, between sugars and free amino acids, produce polymeric yellow to dark brown substances, known as melanoidins. These melanoidins can be extracted into hot water, separated and characterized.105... [Pg.141]

Amino Acid Content. Amino acid content of field pea products is related to protein level, method of processing, and fraction (starch or protein). The protein fraction contains fewer acidic (glu, asp) amino acids than the starch fraction and more basic (lys, his, arg) amino acids than the starch fraction. Also, there are more aromatic (tyr, phe) amino acids, leu, iso, ser, val, and pro in the protein fraction than in the starch fraction (5). An amino acid profile of pea protein concentrate shows relatively high lysine content (7.77 g aa/16 g N) but low sulfur amino acids (methionine and cystine) (1.08-2.4 g aa/16 g N). Therefore, it is recommended that air classification or ultrafiltration be used because acid precipitation results in a whey fraction which contains high levels of sulfur amino acids (12,23). Also, drum drying sodium proteinates decreases lysine content due to the Maillard reaction (33). [Pg.29]

Browning caused by Maillard-type reactions between carbohydrates and amino acids or caramelisation contribute to appearance, taste and flavour of many products. Carbohydrate sweeteners are important for these reactions, and other types of sweetening agents may not react in a similar way, therefore rendering products more pale. [Pg.231]

When passage of a sugar solution at 90°C through a weak-base anion exchange resin was interrupted, an explosion occurred. This was attributed to an exothermic Maillard reaction (interaction of an amino acid with a glycosidic OH group) under the poor heat transfer conditions in a particulate bed without fluid flow. [Pg.209]

The results obtained with this procedure are similar to those previously reported in the literature by Hangartner, Hagenguth et al and Zeman et al (4, 2, 5, 6). The major exception, being the complete lack of alkylated pyrazines and alkylated thiophenes. These odour-intensive compounds arise from the thermal decomposition of proteins and sulphur containing amino acids. They also develop in the thermally induced reaction of proteins with carbohydrates (Maillard reaction). The authors indicated above have demonstrated that these compounds are invariably produced during the thermal treatment of sludge, a process which is not used in this Authority. [Pg.328]

The extent of heat-induced changes in protein-rich foods can be measured by determining some early Maillard reaction products (O Brien and Morrissey, 1989). Acid treatment of protein-bound or free A -fructoselysine liberates lysine, with a yield of 50%, and two other amino acids, furosine (20%) and pyridosine (10%) (Figure 13.1). The three products that result from hydrolysis of A -lactuloselysine are formed in the proportions of approximately 5 3 to 4 1 to 2, however the yield of different derivatives is variable. Therefore, in order to use these unique amino acids as indicators of changes in lysine content, the hydrolysis should be carried out in strictly-defined conditions. Furosine is present in various food products in a very wide range of concentrations (Table 13.2). [Pg.289]

The factors affecting the Maillard reaction include temperature, time, moisture content, concentration, pH, and nature of the reactants. - It has been shown that, out of 21 amino acids, glycine, lysine, tryptophan, and tyrosine provide the most intense browning when exposed to five saccharides, especially a-lactose. The Maillard reaction is also responsible for the decreased availability of lysine in proteinaceous foods. [Pg.307]

The formation of oxygen-containing heterocyclic compounds is also a consequence of the Maillard reaction. Amines and amino acids have a catalytic effect upon the formation of 2-furaldehyde (5), 5-(hydroxy-methyl)-2-furaldehyde (11),2-(2-hydroxyacetyl)furan (44),2 and 4-hy-droxy-5-methyl-3(2//)-furanone (111) (see Ref. 214). This catalytic effect can be observed with several other non-nitrogenous products, including maltol. The amino acid or amine catalysis has been attributed to the transient formation of enamines or immonium ions, or the 1,2-2,3 eno-lization of carbohydrates. Of interest is the detection of A -(2-furoyl-... [Pg.318]

Several other non-nitrogenous products have been identified as products of the Maillard reaction. These include butanol, butanone, butane-dione, and pentane-2,3-dione as well as dihydroxyacetone, glycer-aldehyde, and D-erythrose. Obviously, the same products are present after mild acidic or basic degradation of carbohydrates. Thus, the necessity of an amine or amino acid in the mechanism of their formation is uncertain. [Pg.321]

Several markers for the Maillard reaction have been described in the literature. For example, the product initially formed between glucose and lysine is partly transformed into furosine (Heyns et ah, 1968) on acid hydrolysis. Conversely, the fluorescent amino acid pentosidine (Sell and Monnier, 1989) is an advanced glycation endproduct (AGE) and may form covalent bonds between proteins (cross-linking). Furthermore, the Maillard reaction leads to an increase in characteristic fluorescence (excitation 370 nm, emission 440 nm) (Monnier et ah, 1984 Pongor et ah, 1984). [Pg.44]

Aside from the Maillard reaction, other covalent modifications of amino acids and proteins are possible within the caries lesion, which merit future investigation. For example, certain oral microorganisms excrete y-glutamyl transferases. These enzymes catalyse the formation of cross-links between glutamic acid and lysine residues of proteins. In addition, N-acyl amino acids are present in plaque, which adsorb to mineral surfaces. [Pg.98]


See other pages where Amino acid Maillard is mentioned: [Pg.296]    [Pg.296]    [Pg.193]    [Pg.449]    [Pg.458]    [Pg.303]    [Pg.191]    [Pg.233]    [Pg.151]    [Pg.215]    [Pg.324]    [Pg.244]    [Pg.12]    [Pg.23]    [Pg.125]    [Pg.14]    [Pg.17]    [Pg.223]    [Pg.309]    [Pg.555]    [Pg.288]    [Pg.289]    [Pg.295]    [Pg.311]    [Pg.57]    [Pg.58]    [Pg.67]    [Pg.116]    [Pg.16]    [Pg.567]    [Pg.321]   
See also in sourсe #XX -- [ Pg.265 ]




SEARCH



Maillard

© 2024 chempedia.info