Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine bonding with

Figure 10.3-40. The rating for the disconnection strategy carbon-heteroatom bonds is illustrated, Please focus on the nitrogen atom of the tertiary amino group. It is surrounded by three strategic bonds with different values. The low value of 9 for one ofthese bonds arises because this bond leads to a chiral center. Since its formation requires a stereospecific reaction the strategic weight of this bond has been devalued. In contrast to that, the value of the bond connecting the exocyclic rest has been increased to 85, which may be compared with its basic value as an amine bond. Figure 10.3-40. The rating for the disconnection strategy carbon-heteroatom bonds is illustrated, Please focus on the nitrogen atom of the tertiary amino group. It is surrounded by three strategic bonds with different values. The low value of 9 for one ofthese bonds arises because this bond leads to a chiral center. Since its formation requires a stereospecific reaction the strategic weight of this bond has been devalued. In contrast to that, the value of the bond connecting the exocyclic rest has been increased to 85, which may be compared with its basic value as an amine bond.
The Birch reductions of C C double bonds with alkali metals in liquid ammonia or amines obey other rules than do the catalytic hydrogenations (D. Caine, 1976). In these reactions regio- and stereoselectivities are mainly determined by the stabilities of the intermediate carbanions. If one reduces, for example, the a, -unsaturated decalone below with lithium, a dianion is formed, whereof three different conformations (A), (B), and (C) are conceivable. Conformation (A) is the most stable, because repulsion disfavors the cis-decalin system (B) and in (C) the conjugation of the dianion is interrupted. Thus, protonation yields the trans-decalone system (G. Stork, 1964B). [Pg.103]

Chemical Properties The formation of salts with acids is the most characteristic reaction of amines. Since the amines are soluble in organic solvents and the salts are usually not soluble, acidic products can be conveniendy separated by the reaction with an amine, the unshared electron pair on the amine nitrogen acting as proton acceptor. Amines are good nucleophiles reactions of amines at the nitrogen atom have as a first step the formation of a bond with the unshared electron pair of nitrogen, eg, reactions with acid anhydrides, haUdes, and esters, with carbon dioxide or carbon disulfide, and with isocyanic or isothiocyanic acid derivatives. [Pg.198]

Unlike carbon, the silicon atom may utilise vacant orbitals to expand its valence beyond four, to five or six, forming additional bonds with electron donors. This is shown by isolated amine complexes. The stabiUty of the organosHane amine complexes varies over a wide range and depends on the nature of the donor and acceptor (2). [Pg.26]

It was reported only recently that A-methyl transfer from an oxaziridine to an amine occurs with formation of an N—N bond (79JA6671). N—N bond forming reactions with A-unsubstituted oxaziridines had been found immediately after discovery of this class of compound (64CB2521) and have led to simple hydrazine syntheses (79AHC(24)63). Secondary amines like diethylamine or morpholine are A-aminated by (52) in the course of some minutes at room temperature with yields exceeding 90% (77JPR195). Further examples are the amination of aniline to phenylhydrazine, and of the Schiff base (96) to the diaziridine (97). [Pg.209]

The interaction of the lone-pair electrons on an amine nitrogen with adjacent C—H bonds is another example of a hyperconjugative effect that can be described in MO language. The lone-pair electrons, when properly aligned with the C—H bond, lead to a... [Pg.56]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

This apparent characteristic enhancement in the basicity has been used quite frequently for the determination of the position of a double bond with respect to the nitrogen atom in unsaturated amines. The cases such as neostrychnine (134) and dehydroquinuclidine (139) in which the protonation at the 8-carbon atom cannot occur due to the lack of overlap between the electron pair on the nitrogen atom and the tt electrons of the double bond, since this would involve the formation of a double bond at the bridgehead— a violation of Bredt s rule—show a decrease in basicity. For instance the basicities of quinuclidine (140) and dehydroquinuclidine (139) have been shown by Grob et al. (82), to differ by 1.13 pK units in aqueous solution at 25. This decrease in basicity has been attributed to the electron-withdrawing inductive effect of the double bond. [Pg.49]

In the case of nonionic but polar compounds such as sugars, the excellent solvent properties of water stem from its ability to readily form hydrogen bonds with the polar functional groups on these compounds, such as hydroxyls, amines, and carbonyls. These polar interactions between solvent and solute are stronger than the intermolecular attractions between solute molecules caused by van der Waals forces and weaker hydrogen bonding. Thus, the solute molecules readily dissolve in water. [Pg.38]

These processes are characterized by a high capability of absorbing large amounts of acid gases. They use a solution of a relatively weak base, such as monoethanolamine. The acid gas forms a weak bond with the base which can be regenerated easily. Mono- and diethanolamines are frequently used for this purpose. The amine concentration normally ranges between 15 and 30%. Natural gas is passed through the amine solution where sulfides, carbonates, and bicarbonates are formed. [Pg.4]

When an amine reacts with an acid chloride, an amide is formed. What would happen, though, if a diamine and a diacid chloride were allowed to react Each partner could form two amide bonds, linking more and more molecules together until a giant polyamide resulted. In the same way, reaction of a diol with a diacid would lead to a polyester. [Pg.818]

The reaction between the photoexcited carbonyl compound and an amine occurs with substantially greater facility than that with most other hydrogen donors. The rate constants for triplet quenching by amines show little dependence on the amine a-C-H bond strength. However, the ability of the amine to release an electron is important.- - This is in keeping with a mechanism of radical generation which involves initial electron (or charge) transfer from the amine to the photoexcited carbonyl compound. Loss of a proton from the resultant complex (exciplex) results in an a-aminoalkyl radical which initiates polymerization. The... [Pg.102]

The reversibility of aromatic diazotization in methanol may indicate that the intermediate corresponding to the diazohydroxide (3.9 in Scheme 3-36), i. e., the (Z)-or (is)-diazomethyl ether (Ar — N2 — OCH3), may be the cause of the reversibility. In contrast to the diazohydroxide this compound cannot be stabilized by deprotonation. It can be protonated and then dissociates into a diazonium ion and a methanol molecule. This reaction is relatively slow (Masoud and Ishak, 1988) and therefore the reverse reaction of the diazomethyl ether to the amine may be competitive. Similarly the reversibility of heteroaromatic amine diazotizations with a ring nitrogen in the a-position may be due to the stabilization of the intermediate (Z)-diazohydroxide, hydrogen-bonded to that ring nitrogen (Butler, 1975). However, this explanation is not yet supported by experimental data. [Pg.64]

The ortho effect has its origin in the ability of an ortho substituent to form a hydrogen bond with a hydrogen on the amine nucleophile58-61. The present... [Pg.428]

Answer The amine it can form hydrogen bonds with the —NH2 group, but the ester group cannot form hydrogen bonds in the pure state.J... [Pg.880]

The field of alkaloid synthesis via tandem cyclizations favors the application of (TMSlsSiH over other radical-based reagents, due to its very low toxicity and high chemoselectivity. For example, cyclization of the iodoarylazide 102, mediated by (TMSlsSiH under standard experimental conditions, produced the N-Si(TMS)3 protected alkaloid 103 that after washing with dilute acid afforded the amine 104 in an overall 83% yield from 102 (Reaction 81). ° The formation of the labile N-Si(TMS)3 bond was thought to arise from the reaction of the product amine 104 with the by-product (TMSlsSil. The skeletons of ( )-horsfiline, ( )-aspidospermidine and (+ )-vindoline have been achieved by this route. - ... [Pg.156]

Organoboranes react with a mixture of aqueous NH3 and NaOCl to produce primary amines. It is likely that the actual reagent is chloramine NH2CI. Chloramine itself,hydroxylamine-O-sulfonic acid in diglyme, and trimethyl-silyl azide " also give the reaction. Since the boranes can be prepared by the hydroboration of alkenes (15-16), this is an indirect method for the addition of NH3 to a double bond with anti-Markovnikov orientation. Secondary amines can be prepared by the treatment of alkyl- or aryldichloroboranes or dialkylchlorobor-anes with alkyl or aryl azides. [Pg.800]

Other compounds with nitrogen-nitrogen bonds have been used instead of diazonium salts. Among these are N-nitroso amides [ArN(NO)COR], triazenes, and azo compounds. Still another method involves treatment of an aromatic primary amine directly with an alkyl nitrite in an aromatic substrate as solvent. ... [Pg.929]

Triple bonds can also be selectively reduced to double bonds with DIBAL-H, " with activated zinc (see 12-36), with hydrogen and Bi2B-borohydride exchange resin, ° or (internal triple bonds only) with alkali metals (Na, Li) in liquid ammonia or a low-molecular-weight amine.Terminal alkynes are not reduced by the Na—NH3 procedure because they are converted to acetylide ions under these conditions. However, terminal triple bonds can be reduced to double bonds by the... [Pg.1007]

In 1982, Breslow and coworkers reported the first example of iron-catalyzed nitrene C-H bond insertion [29]. They used [Fe(TTP)] as catalyst and PhINTs as nitrene precursor to achieve C-H bond amination of cyclohexane. However, the product yield was low (around 10%). Subsequently, the same authors found that iminoio-dane 7 derived from 2,5-diisopropylbenzenesuIfonamide underwent intramolecular C-H amination efficiently with [Fe(TPP)Cl] as catalyst at room temperature, giving the insertion product in 77% yield (Scheme 29) [85]. [Pg.133]

Iron phthalocyanine is an efficient catalyst for intermolecular amination of saturated C-H bonds. With 1 mol% iron phthalocyanine and 1.5 equiv. PhlNTs, amination of benzylic, tertiary, and ally lie C-H bond have been achieved in good yields (Scheme 31). With cyclohexene as substrate, the allylic C-H bond amination product was obtained in 75% yield, and the aziridination product was found in minor amount (17% yield) [79]. [Pg.134]


See other pages where Amine bonding with is mentioned: [Pg.153]    [Pg.159]    [Pg.217]    [Pg.30]    [Pg.153]    [Pg.159]    [Pg.217]    [Pg.30]    [Pg.493]    [Pg.189]    [Pg.218]    [Pg.27]    [Pg.283]    [Pg.287]    [Pg.487]    [Pg.36]    [Pg.280]    [Pg.414]    [Pg.239]    [Pg.308]    [Pg.169]    [Pg.320]    [Pg.197]    [Pg.270]    [Pg.100]    [Pg.440]    [Pg.93]    [Pg.76]    [Pg.234]    [Pg.418]    [Pg.202]    [Pg.1522]    [Pg.174]    [Pg.115]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Aromatic C-N Bond Formation with Non-Amine Substrates and Ammonia Surrogates

Bonding amines

Hydrogen bonding amines with water

© 2024 chempedia.info