Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amide , amines from reactions

The reaction is applicable to the preparation of amines from amides of aliphatic aromatic, aryl-aliphatic and heterocyclic acids. A further example is given in Section IV,170 in connexion with the preparation of anthranilic acid from phthal-imide. It may be mentioned that for aliphatic monoamides containing more than eight carbon atoms aqueous alkaline hypohalite gives poor yields of the amines. Good results are obtained by treatment of the amide (C > 8) in methanol with sodium methoxide and bromine, followed by hydrolysis of the resulting N-alkyl methyl carbamate ... [Pg.413]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

Condensa.tlon, This term covers all processes, not previously iacluded ia other process definitions, where water or hydrogen chloride is eliminated ia a reaction involving the combination of two or more molecules. The important condensation reactions are nitrogen and sulfur heterocycle formation, amide formation from acid chlorides, formation of substituted diphenyl amines, and misceUaneous cyclizations. [Pg.293]

The ketocarbene 4 that is generated by loss of Na from the a-diazo ketone, and that has an electron-sextet, rearranges to the more stable ketene 2 by a nucleophilic 1,2-shift of substituent R. The ketene thus formed corresponds to the isocyanate product of the related Curtius reaction. The ketene can further react with nucleophilic agents, that add to the C=0-double bond. For example by reaction with water a carboxylic acid 3 is formed, while from reaction with an alcohol R -OH an ester 5 is obtained directly. The reaction with ammonia or an amine R -NHa leads to formation of a carboxylic amide 6 or 7 ... [Pg.301]

Another alternative for preparing a primary amine from an alkyl halide is the Gabriel amine synthesis, which uses a phthalimide alkylation. An imide (—CONHCO—) is similar to a /3-keto ester in that the acidic N-H hydrogen is flanked by two carbonyl groups. Thus, imides are deprotonated by such bases as KOH, and the resultant anions are readily alkylated in a reaction similar to the acetoacetic ester synthesis (Section 22.7). Basic hydrolysis of the N-alkylated imide then yields a primary amine product. The imide hydrolysis step is analogous to the hydrolysis of an amide (Section 21.7). [Pg.929]

Although there are several reports in the literature on boron-mediated amide formations, the boron reagents had to be used in stoichiometric amounts.1-4-5-6-7-8-9 Recently, Yamamoto et al. presented the first truly catalytic method allowing for a direct amide formation from free carboxylic acids and amines as the reaction partners.10-1112 Best results were obtained by using phenylboronic acids bearing electron withdrawing substituents in the meta- and/or para-positions such as 3,4,5-trifluorophenylboronic acid or 3,5-bis(trifluoromethyl)boronic acid as the catalysts. [Pg.137]

This procedure, which is based on the work of Ishii and co-workers, affords a mild and general method for converting a wide variety of esters to primary, secondary, and tertiary amides (Table 1). While the preparation of the tertiary amide, N,N-dimethylcyclohexanecarboxamide, described here is carried out in benzene, aluminum amides derived from ammonia and a variety of primary amines have been prepared by reaction with trimethylaluminum in dichloromethane and utilized for aminolysis in this solvent. Although 1 equivalent of the dimethylaluminum amides from amines was generally sufficient for high conversion within 5-48 hours, best results were obtained when 2 equivalents of the aluminum reagent from ammonia was used. Diethyl-aluminum amides can also effect aminolysis, but with considerably slower rates. [Pg.162]

OS 10] [R 10] [P 9] The specific interfadal area was varied for a phase-transfer reaction for four amide formations from two amines and two acid chlorides [23[. This was done by filling the solutions in normal test-tubes of varying diameter (1-5 X cm ) and using a micro reactor which had the largest specific interface (45 X cm ). The yields of all foiu reactions are highly and similarly dependent on... [Pg.429]

Zinc carbamate complexes are well known, and the structural types and stabilities can be compared with thiocarbamates and dithiocarbamates which are discussed in Sections 6.8.11.1.3 and 6.8.7.1.4482 Carbamates of zinc can be formed from the reaction of carbon dioxide with alkylzinc alkyl amides and further reaction with alkylzinc can give a distorted cubane structure.483 The tetrameric diethylcarbamate species initially formed can also be used to produce monomeric or dimeric carbamate structures in reaction with amines tetramethylethylenediamine forms a monomer [(Me2NCH2)2Zn(02CN(C2H5)2)2] with an octahedral zinc center and pyridine forms a dimer[CsH5NZn2Me(02CN(C2H5)2)3] with tetrahedral zinc centers.484... [Pg.1187]

In the presence of cyclohexyl amine the photolysis of the dienone (58) gives the cyclohexyl amide expected from dienone ring fission and reaction of cyclohexyl amine with the ketene. However, in the presence of weaker nucleophiles the ring opened product is not trapped and instead there is a relatively slow formation of phenols<36,44) ... [Pg.168]

Hence, chalcogenoamidophosphinic acids of general formula R2P(E)NHR (27) can be considered as dichalcogenophosphinic acids with one of the chalcogen atoms replaced by an amido group. These amido species are still normally referred to as acids due to their acidic amide protons. They are accessible from reaction of thiophosphinic chlorides and primary amines (Equation 43) or from reaction of aminophosphines with elemental chalcogen... [Pg.302]

Aliphatic amides possess more strong a-C—H bonds in comparison with amines. This is the result of the carbonyl group influence on the stabilization of the formed a-amidoalkyl radical formed from amide in the reaction with the peroxyl radical. This influence is not so strong as that of the amine group. The values of the a-C—H bond in a few amides were estimated recently by the IPM method [4] and are given here. [Pg.362]

A one-pot conversion of carboxylic acids into esters and amide derivatives from alcohols, amines or hydrazines has been reported [53], which involves the initial reaction of the acid with methane- or toluenesulphonyl chloride to yield a mixed anhydride. [Pg.95]

The carboxylic functionalities inserted onto the tubes can be used as platforms to obtain further transformations (Fig. 3.5). A commonly utilized route is the reaction of carboxylic groups with thionyl chloride or oxalyl chloride to prepare the corresponding acyl chlorides, which are useful intermediates for amidation or esterification reactions. Amides can also be prepared directly from the acids by means of standard solution chemistry conditions, using carbodiimide derivatives in the presence of the selected amine. [Pg.48]

Both esters and amides undergo hydrolysis reactions. In a hydrolysis reaction, the ester or amide bond is cleaved, or split in two, to form two products. As mentioned earlier, the hydrolysis of an ester produces a carboxylic acid and an alcohol. The hydrolysis of an amide produces a carboxylic acid and an amine. There are two methods of hydrolysis acidic hydrolysis and basic hydrolysis. Both methods are shown in Figure 2.9. Hydrolysis usually requires heat. In acidic hydrolysis, the ester or amide reacts with water in the presence of an acid, such as H2SO4. In basic hydrolysis, the ester or amide reacts with the OH ion, from NaOH or water, in the presence of a base. Soap is made by the basic hydrolysis of ester bonds in vegetable oils or animal fats. [Pg.76]


See other pages where Amide , amines from reactions is mentioned: [Pg.267]    [Pg.267]    [Pg.597]    [Pg.260]    [Pg.240]    [Pg.218]    [Pg.258]    [Pg.745]    [Pg.366]    [Pg.1285]    [Pg.1290]    [Pg.127]    [Pg.1411]    [Pg.326]    [Pg.17]    [Pg.182]    [Pg.99]    [Pg.103]    [Pg.29]    [Pg.370]    [Pg.22]    [Pg.31]   
See also in sourсe #XX -- [ Pg.814 , Pg.815 ]

See also in sourсe #XX -- [ Pg.814 , Pg.815 ]




SEARCH



Acid anhydride, amides from reaction with amines

Amidating reaction

Amidation reactions

Amide , amines from reaction with

Amide Reaction

Amides amination reactions

Amides amines

Amides from amines

Amination/amidation

Amination/amidation Amines

From amides

From aminals

From amines

© 2024 chempedia.info