Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium oxides catalytic activity

Freeder, B. G. et al., J. Loss Prev. Process Ind., 1988, 1, 164-168 Accidental contamination of a 90 kg cylinder of ethylene oxide with a little sodium hydroxide solution led to explosive failure of the cylinder over 8 hours later [1], Based on later studies of the kinetics and heat release of the poly condensation reaction, it was estimated that after 8 hours and 1 min, some 12.7% of the oxide had condensed with an increase in temperature from 20 to 100°C. At this point the heat release rate was calculated to be 2.1 MJ/min, and 100 s later the temperature and heat release rate would be 160° and 1.67 MJ/s respectively, with 28% condensation. Complete reaction would have been attained some 16 s later at a temperature of 700°C [2], Precautions designed to prevent explosive polymerisation of ethylene oxide are discussed, including rigid exclusion of acids covalent halides, such as aluminium chloride, iron(III) chloride, tin(IV) chloride basic materials like alkali hydroxides, ammonia, amines, metallic potassium and catalytically active solids such as aluminium oxide, iron oxide, or rust [1] A comparative study of the runaway exothermic polymerisation of ethylene oxide and of propylene oxide by 10 wt% of solutions of sodium hydroxide of various concentrations has been done using ARC. Results below show onset temperatures/corrected adiabatic exotherm/maximum pressure attained and heat of polymerisation for the least (0.125 M) and most (1 M) concentrated alkali solutions used as catalysts. [Pg.315]

Recently, the preparation of metallosilicates with MFI structure, which are composed of silicone oxide and metal oxide substituted isomorphously to aluminium oxide, has been studied actively [1,2]. It is expected that acid sites of different strength from those of aluminosilicate are generated when some tri-valent elements other than aluminium are introduced into the framework of silicalite. The Bronsted acid sites of metallosilicates must be Si(0H)Me, so the facility of heterogeneous rupture of the OH bond should be due to the properties of the metal element. Therefore, the acidity of metallosilicate could be controlled by choosing the metal element. Moreover, the transition-metal elements introduced into the zeolite framework play specific catalytic roles. For example, Ti-silicate with MFI structure has the high activity and selectivity for the hydroxylation of phenol to produce catechol and hydroquinon [3],... [Pg.171]

Aluminium oxide exists in many crystalline modifications, usually designated by Greek letters, some with hexagonal and some with cubic lattices (cf. refs. 11 and 24). The best known and mostly used forms are a- and 7-alumina but practical catalysts are seldom pure crystallographic specimens. This makes the surface chemistry of aluminas rather complicated. Moreover, the catalytic activity of alumina depends very much on impurities. Small amounts of sodium (0.08—0.65%) poison the active centres for isomerisation but do not affect dehydration of alcohols [10]. On the other hand, traces of sulphates and silica may increase the number of strong acidic sites and change the activity pattern. [Pg.266]

Porous oxide catalytic materials are commonly subdivided into microporous (pore diameter <2nm) and mesoporous (2-50 nm) materials. Zeolites are aluminosilicates with pore sizes in the range of 0.3-1.2 nm. Their high acidic strength, which is the consequence of the presence of aluminium atoms in the framework, combined with a high surface area and small pore-size distribution, has made them valuable in applications such as shape-selective catalysis and separation technology. The introduction of redox-active heteroatoms has broadened the applicability of crystalline microporous materials towards reactions other than acid-catalysed ones. [Pg.2]

When considering results for AU/AI2O3 catalysts, it has to be remembered that the oxides, oxyhydroxides and hydroxides of aluminium can exist in many crystalline forms and can have a wide range of surface areas, these can both change in response to pretreatments, structure, surface area and changes during preparation are not always reported. There has been no systematic study of the importance of these variables on catalytic activity. [Pg.178]

Direct evidence for a combination of catalytic fluorination and chlorination [4] was obtained from radiotracer studies in which fluorinated chromia catalysts were labelled with the short-lived (t /2 = 110 min) / + emitting isotope fluorine-18 [11]. Using this isotope it was possible to probe the interactions between HF and various fluorinated chromia catalysts more directly than had been possible hitherto. Three types of surface F-containing species were differentiated, weakly adsorbed HF which was easily removed by an inert gas flow, non-labile F, believed to be bound directly to surface Crin, and catalytically active F which could be incorporated into the organic products [12]. The controversy between dismutation (concerted F-for-Cl and Cl-for-F transfers) and non-concerted halogen exchange processes has been resolved more recently and the evidence is described later in the chapter. What is clear from this early work however, is the importance of aluminium and chromium(III) oxides as catalyst precursors. Fluorination of the surfaces of these oxides is slow (cf [12]) and although there are many references to alu-... [Pg.368]

Aluminium dissolves with H2 evolution, and this hydrogen remains chemisorbed on nickel, presumably in a dissociated form. Raney nickel catalysts are often doped with other metals in order to improve the catalytic activity the selectivity decreases in the order. Mo > Cr > Fe > Cu > Co. These metals are fused with the Ni-Al alloy and remain on the final catalyst, probably as oxides. It is believed that the role of the doping metals is to strengthen the selective adsorption of nitrogenous substrates. [Pg.93]

The catalytic activity of aluminium alkyl and of aluminium alkyl-water systems could be further enhanced by the addition of readily polymerizable oxides, usually epoxides such as ECH or PO, (promoters) [62]. These initiators are very active with BCMO but the primary kinetic studies... [Pg.281]

Studies related to alumina-supported tungsten oxide metathesis catalysts also continue.Unsupported alumina tungstate, Al2(W04)3, has metathesis activity between 100 and 200° C it has been proposed that this difficult-to-reduce compound is a reasonable precursor to the active metathesis sites for tungsten oxide supported on 7-alumina. However, a controversy exists as to the presence of Al2(W04)3 as a major component on the surface of these catalysts Raman spectra do not show bands that can be attributed to Al2(W04)3. Evidence reported in the literature for the formation of aluminium tungstate on the surface is not valid because of impurities in the reference compounds used. The conclusion that this compound is not a major surface component does not completely rule out the possibility that it is involved in the catalytic active phase,especially since the number of active sites is extremely small, e.g., 10 sites per gram of... [Pg.111]

Source of Activity in other Siliceous Catalysts.—Although various oxides can be combined with silica to give amorphous, acidic catalysts, the replacement of aluminium in zeolites (specially non-faujasitic zeolites) has proved to be very difficult with any element other than gallium. Materials of ZSM-5 structure with iron or boron in place of aluminium have been claimed recently, but it is not yet certain that either iron or boron is part of the zeolite lattice or that the catalytic activity observed is not due to residual lattice aluminium. [Pg.214]

The Co-exchanged zeolites were not effective catalysts for the oxidation of cyclohexane. The cobalt exchanged ions were not stabilized enough by the zeolite interactions and part of these cations were released in the oxidation medium. Thus, we decided to explore the activity of P-zeolites in which cobalt ions were incorporated into the framework. We hoped that the incorporation would increase the stability of the cation within the solid. We studied the catalytic activities of cobalt substituted P-zeolites containing aluminium (Co-Al-BEA) and boron (Co-B-BEA) towards the oxidation of cyclohexane into adipic acid. [Pg.582]

Heterogeneous catalysts which are active for the catalysis of the MPVO reactions include amorphous metal oxides and zeolites. Their activity is related to their surface basicity or Lewis acidity. Zeolites are only recently being developed as catalysts in the MPVO reactions. Their potential is related to the possibility of shape-selectivity as illustrated by an example showing absolute stereoselectivity as a result of restricted transition-state selectivity. In case of alkali or alkaline earth exchanged zeolites with a high aluminium content (X-type) the catalytic activity is most likely related to basic properties. For zeolite BEA (Si/Al=12), however, the dynamic character of those aluminium atoms which are only partially connected to the framework appear to play a role in the catalytic activity. Similarly, the Lewis acid character of the titanium atoms in aluminium free [Ti]-BEA explains its activity in the MPVO reactions. [Pg.537]

The action of nickel is so much more powerful than that of alumina that the dehydrating action of the latter is practically eliminated when catalysts containing mixtures of reduced nickel and alumina are used. In fact, the alumina apparently only acts as a support for the active metal. However, comparative measurements have shown that the oxides of aluminium, iron, magnesium, and calcium may act as strong promoters for nickel catalysts. This effect has been explained as a mechanical effect, viz., the development of a large surface by which relatively more active metal is effectively exposed.10 When only small amounts of oxide are present the effect is predominantly that of support. The increased addition of oxide may increase the catalytic activity up to a certain point beyond which it only serves to dilute the catalyst and reduce its selectivity. Other explanations of the promoter action postulate the removal of catalyst poisons by the oxide, or regeneration of the active metallic catalyst by oxidations and reductions.20... [Pg.44]

Recently, there has been considerable interest in the isomorphous substitution of tetrahedral aluminium in zeolite frameworks with catalytically active elements such as iron, gallium and boron. These materials have acidities Afferent from the corresponding aluminosilicates leading to altered activity, selectivity and stability. Mdssbauer spectroscopy has been used to study the iron incorporated into zeolites during synthesis. Fe(III) can be present on tetrahedral framework sites as Fe " cations acting as counterions and as Fe(III) oxides precipitated in or on the zeolite crystals. The most common iron oxide is a-Fe203 which contains iron only in octahedral coordination. [Pg.535]


See other pages where Aluminium oxides catalytic activity is mentioned: [Pg.81]    [Pg.482]    [Pg.459]    [Pg.158]    [Pg.212]    [Pg.141]    [Pg.732]    [Pg.11]    [Pg.212]    [Pg.127]    [Pg.377]    [Pg.385]    [Pg.317]    [Pg.281]    [Pg.244]    [Pg.166]    [Pg.279]    [Pg.686]    [Pg.167]    [Pg.207]    [Pg.388]    [Pg.482]    [Pg.963]    [Pg.20]    [Pg.130]    [Pg.400]    [Pg.109]    [Pg.189]    [Pg.19]    [Pg.935]    [Pg.270]    [Pg.304]   
See also in sourсe #XX -- [ Pg.244 ]

See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Activated oxidation

Activation oxidation

Active oxides

Activity oxidation

Aluminium oxides

Oxidative activation

Oxides activated

Oxidizing activators

© 2024 chempedia.info