Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminium isolation

M.p. 296 C. Accepts an electron from suitable donors forming a radical anion. Used for colorimetric determination of free radical precursors, replacement of Mn02 in aluminium solid electrolytic capacitors, construction of heat-sensitive resistors and ion-specific electrodes and for inducing radical polymerizations. The charge transfer complexes it forms with certain donors behave electrically like metals with anisotropic conductivity. Like tetracyanoethylene it belongs to a class of compounds called rr-acids. tetracyclines An important group of antibiotics isolated from Streptomyces spp., having structures based on a naphthacene skeleton. Tetracycline, the parent compound, has the structure ... [Pg.389]

This compound, which contains atoms arranged tetrahedrally around the boron atom, can readily be isolated from a mixture of dimethyl ether and boron trichloride. On occasions a chlorine atom, in spite of its high election affinity, will donate an electron pair, an example being found in the dimerisation of gaseous monomeric aluminium chloride to give the more stable Al2Clg in which each aluminium has a tetrahedral configuration ... [Pg.42]

In the following experiment, salicylic acid is reduced to o-hydroxybenzyl alcohol (or saligenin), which being crystalline is readily isolated the excess of hydride is destroyed by the addition of undried ether, and the aluminium hydroxide then brought into solution by the addition of sulphuric acid. [Pg.155]

Method 2. Into a 500 ml. round-bottomed flask place 120 ml. of dry A.R. benzene, and 35 g. (29 ml.) of redistilled benzoyl chloride. Weigh out 30 g. of finely-powdered, anhydrous aluminium chloride into a dry corked test-tube, and add the solid, with frequent shaking, during 10 minutes to the contents of the flask. Fit a reflux condenser to the flask, and heat on a water bath for 3 hours or until hydrogen chloride is no longer evolved. Pour the contents of the flask wliile still warm into a mixture of 200 g. of crushed ice and 100 ml. of concentrated hydrochloric acid. Separate the upper benzene layer (filter first, if necessary), wash it with 50 ml. of 5 per cent, sodium hydroxide solution, then with water, and dry with anhydrous magnesium sulphate. Isolate the benzophenone as in Method 1. The yield is 30 g. [Pg.734]

Sample calculations for designing a 2500 A non-isolated phase aluminium busbar system 28/891... [Pg.857]

The phenomenon uneven distribution of current within the same conductor due to the inductive effect is known as the skin effect and results in an increased effective resistance of the conductor. The ratio of a.c. to d.c. resistance, R JR. is the measure of the skin effect and is known as the skin effect ratio . Figure 28.13(a) illustrates the skin elTect for various types and sizes of aluminium in flat sections. For easy reference, the skin effects in isolated round (solid or hollow) and channel conductors (in box form) are also shown in Figures 28.13(b) and (c) respectively. [Pg.874]

Figure 28.13(a) Skin effect in isolated rectangular busbars, (neglecting the proximity effect) (Courtesy l ndian Aluminium Co, based Alcon of Canada)... [Pg.875]

Introduction Types of metal-enclosed bus systems Design parameters and service conditions for a metal enclosed bus system Short-circuit effects Service conditions Other design considerations Skin effect Proximity effect Sample calculation for designing a 2500 A non-isolaled phase aluminium busbar systern... [Pg.998]

Another problem in the construction of tlrese devices, is that materials which do not play a direct part in the operation of the microchip must be introduced to ensure electrical contact between the elecuonic components, and to reduce the possibility of chemical interactions between the device components. The introduction of such materials usually requires an annealing phase in the construction of die device at a temperature as high as 600 K. As a result it is also most probable, especially in the case of the aluminium-silicon interface, that thin films of oxide exist between the various deposited films. Such a layer will act as a banier to inter-diffusion between the layers, and the transport of atoms from one layer to the next will be less than would be indicated by the chemical potential driving force. At pinholes in the AI2O3 layer, aluminium metal can reduce SiOa at isolated spots, and form the pits into the silicon which were observed in early devices. The introduction of a tlrin layer of platinum silicide between the silicon and aluminium layers reduces the pit formation. However, aluminium has a strong affinity for platinum, and so a layer of clrromium is placed between the silicide and aluminium to reduce the invasive interaction of aluminium. [Pg.220]

Gallium was predicted as eka-aluminium by D. 1. Mendeleev in 1870 and was discovered by P. E. Lecoq de Boisbaudran in 1875 by means of the spectroscope de Boi.sbaudran was, in fact, guided at the time by an independent theory of his own and had been searching for the missing element for some years. The first indications came with the observation of two new violet lines in the spark spectrum of a sample deposited on zinc, and within a month he had isolated 1 g of the metal starting from several hundred kilograms of crude zinc blende ore. The... [Pg.216]

The isolation of zinc, over 90% of which is from sulfide ores, depends on conventional physical concentration of the ore by sedimentation or flotation techniques. This is followed by roasting to produce the oxides the SO2 which is generated is used to produce sulfuric acid. The ZnO is then either treated electrolytically or smelted with coke. In the former case the zinc is leached from the crude ZnO with dil H2SO4, at which point cadmium is precipitated by the addition of zinc dust. The ZnS04 solution is then electrolysed and the metal deposited — in a state of 99.95% purity — on to aluminium cathodes. [Pg.1202]

Azaferrocene reacts with aromatic hydrocarbons in the presence of aluminium chloride, giving rise to the cationic complexes of the type (Ti -arene)(Ti -cyclopenta-dienyl)iron(l+) isolated as BF4 salts [87JOM(333)71]. The complex 28 is obtained by reaction of the sulfane compound [Cp(SMc2)3Fe]BF4 with pentamethyl-pyrrole [88AG(E)579 88AG(E)1468 90ICA(170)155]. The metallic site in this center reveals expressed Lewis acidity (89CB1891). [Pg.123]

Reactions in chloroaluminate(III) salts and other related binary salts often proceed smoothly to give products. However, it should be noted that these salts are water-sensitive and must be handled under dry conditions. They react with water to give hydrated aluminium(III) ionic species and HCl. When a reactant or product contains a heteroatomic functional group, such as a ketone, a strong ketone/alumini-um(III) chloride adduct is formed. In these cases, this adduct can be difficult to separate from the ionic liquid at the end of a reaction. The isolation of the product often... [Pg.177]

The ionic liquid process has a number of advantages over traditional cationic polymerization processes such as the Cosden process, which employs a liquid-phase aluminium(III) chloride catalyst to polymerize butene feedstocks [30]. The separation and removal of the product from the ionic liquid phase as the reaction proceeds allows the polymer to be obtained simply and in a highly pure state. Indeed, the polymer contains so little of the ionic liquid that an aqueous wash step can be dispensed with. This separation also means that further reaction (e.g., isomerization) of the polymer s unsaturated ot-terminus is minimized. In addition to the ease of isolation of the desired product, the ionic liquid is not destroyed by any aqueous washing procedure and so can be reused in subsequent polymerization reactions, resulting in a reduction of operating costs. The ionic liquid technology does not require massive capital investment and is reported to be easily retrofitted to existing Cosden process plants. [Pg.322]

An explanation that may be suggested of these facts is that solid solutions of a quadrivalent metal (zinc) in a tervalent metal (aluminium) tend to be unstable because of the difficulty of saturating the valency of isolated quadrivalent atoms by bonds to its lower-valent ligates. With zinc as the solute an increase in free energy at the lower temperatures would accompany the separation into the zinc-poor a phase, in which the versatile zinc atoms tend to assume the valency 3 (less stable, however, for them than their normal valency) in order to fit into the aluminium structure, and the zinc-rich a phase, in which the concentration of zinc atoms is great enough to permit the extra valency of zinc to be satisfied through the formation of Zn-Zn bonds. [Pg.391]


See other pages where Aluminium isolation is mentioned: [Pg.2787]    [Pg.730]    [Pg.731]    [Pg.767]    [Pg.878]    [Pg.860]    [Pg.891]    [Pg.944]    [Pg.314]    [Pg.459]    [Pg.547]    [Pg.216]    [Pg.11]    [Pg.131]    [Pg.5]    [Pg.234]    [Pg.660]    [Pg.728]    [Pg.1271]    [Pg.156]    [Pg.116]    [Pg.932]    [Pg.70]    [Pg.407]    [Pg.455]    [Pg.182]    [Pg.116]    [Pg.932]    [Pg.730]    [Pg.731]    [Pg.767]    [Pg.878]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 ]




SEARCH



© 2024 chempedia.info