Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl complexes nucleophilic addition

The complementary approach, activation of unsaturated hydrocarbons toward electrophilic attack by complexation with electron-rich metal fragments, has seen limited investigation. Although there are certainly opportunities in this area which have not been exploited, the electrophilic reactions present a more complex problem relative to nucleophilic addition. For example, consider the nucleophilic versus electrophilic addition to a terminal carbon of a saturated 18-electron metal-diene complex. Nucleophilic addition generates a stable 18-electron saturated ir-allyl complex. In contrast, electrophilic addition at carbon results in removal of two valence electrons from the metal and formation of an unstable ir-allyl unsaturated 16-electron complex (Scheme 1). [Pg.695]

The addition of Pd-X groups to 1,3-dienes is an excellent route to jj -allyl complexes (equation 55). For example, a 1,3-diene and palladium salt in the presence of a nucleophile, such as CH, RO, or RCOO , will produce a TT-allyl complex through addition of the nucleophile to a palladium-coordinated double bond (equation 56). Allenes commonly react with addition of nucleophiles at the central sp-hybridized carbon, producing 2-substituted jr-allyls. However, because of the orthogonality of the TT-orbitals, an )) -allyl cannot form directly. First an -allyl is generated, then C-C rotation gives the r-allyl. [Pg.3572]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Complexes 79 show several types of chemical reactions (87CCR229). Nucleophilic addition may proceed at the C2 and S atoms. In excess potassium cyanide, 79 (R = R = R" = R = H) forms mainly the allyl sulfide complex 82 (R = H, Nu = CN) (84JA2901). The reaction of sodium methylate, phenyl-, and 2-thienyllithium with 79 (R = R = r" = R = H) follows the same route. The fragment consisting of three coplanar carbon atoms is described as the allyl system over which the Tr-electron density is delocalized. The sulfur atom may participate in delocalization to some extent. Complex 82 (R = H, Nu = CN) may be proto-nated by hydrochloric acid to yield the product where the 2-cyanothiophene has been converted into 2,3-dihydro-2-cyanothiophene. The initial thiophene complex 79 (R = R = r" = R = H) reacts reversibly with tri-n-butylphosphine followed by the formation of 82 [R = H, Nu = P(n-Bu)3]. Less basic phosphines, such as methyldiphenylphosphine, add with much greater difficulty. The reaction of 79 (r2 = r3 = r4 = r5 = h) with the hydride anion [BH4, HFe(CO)4, HW(CO)J] followed by the formation of 82 (R = Nu, H) has also been studied in detail. When the hydride anion originates from HFe(CO)4, the process is complicated by the formation of side products 83 and 84. The 2-methylthiophene complex 79... [Pg.14]

Finally, intermediate cationic allyl complexes of palladium15,16 and ruthenium17, produced from allylic esters by the action of substoichiometric amounts of the metal catalyst, have been electronically inverted by reduction to become nucleophilic anion equivalents, which are capable of carbonyl addition. [Pg.452]

Togni s [38] approach was therefore to test the ability of sparteine to act as an ancillary ligand in Pd(II)-allyl complexes—susceptible to nucleophilic attack by stabihzed anions such as Na[CH(COOMe)2]—which could be employed as catalyst precursors. In addition he speculated that the rather rigid and bulky sparteine would be able to induce significant differentiation between the two diastereotopic sites of 1,3-disubstituted allyl hgand, thus leading to enantioselection upon nucleophilic attack. [Pg.82]

These TT-allyl complexes are moderately electrophilic 101 in character and react with a variety of nucleophiles, usually at the less-substituted allylic terminus. After nucleophilic addition occurs, the resulting organopalladium intermediate usually breaks down by elimination of Pd(0) and H+. The overall transformation is an allylic substitution. [Pg.707]

Asymmetric nucleophilic addition of Jt-allyl molybdenum complex as the final route. [Pg.47]

We will discuss each topic below. Later, we will discuss the key reaction, asymmetric nucleophilic addition of a n-allyl Mo complex, in great detail. [Pg.47]

Asymmetric Nucleophilic Addition of a ir-Allyl Mo Complex route... [Pg.48]

A newly developed asymmetric nucleophilic addition of malonate to 7i-allyl Mo complex was the cornerstone for this preparative campaign. [Pg.61]

When we used asymmetric nucleophilic addition of malonate to the Mo tt-allyl complex in our first delivery, the Mo chemistry was not so clearly understood, and our application would be the first large scale example, to the best of our knowledge. Initially our contributions to Mo chemistry were two-fold (i) replacement of non-commercially available (EtCN)3Mo(CO)3 or (C7H8)Mo(CO)3 by more stable and inexpensive Mo(CO)6 by incorporation of proper pre-activating time (ii) simplified preparation of the chiral ligand. Even after we completed the project, we still had a strong interest in Mo chemistry. [Pg.62]

The Tsuji-Trost reaction is the palladium-catalyzed allylation of nucleophiles [110-113]. In an application to the formation of an A-glycosidic bond, the reaction of 2,3-unsaturated hexopyranoside 97 and imidazole afforded A-glycopyranoside 99 regiospecifically at the anomeric center with retention of configuration [114], Therefore, the oxidative addition of allylic substrate 97 to Pd(0) forms the rc-allyl complex 98 with inversion of configuration, then nucleophilic attack by imidazole proceeds with a second inversion of configuration to give 99. [Pg.23]

In the examples presented so far, only two enantiomeric products have been possible in each case, since the substrates have all contained identical substituents on the Cl and C3 positions. However, a more complex situation occurs when the allyl system is unsymmetrically-substituted, as in 43a or 43b (Scheme 12).1161 Here, nucleophilic addition to the corresponding ri3-allyl intermediate 44 may afford an achiral, linear product 45, in addition to the pair of enantiomeric branched products 46. [Pg.97]

B. Akermark, B. Krakenberger, S. Hansson, Ligand Effects and Nucleophilic Addition to (T)3-Allyl)palladium Complexes. A Carbon-13 Nuclear Magnetic Resonance Study, Organometallics, 1987, 6, 620-628. [Pg.102]

Palladium(II) is one of the most important transition metals in catalytic oxidations of allenes [1], Scheme 17.1 shows the most common reactions. Transformations involving oxidative addition of palladium(O) to aryl and vinyl halides do not afford an oxidized product and are discussed in previous chapters. The mechanistically very similar reactions, initiated by nucleophilic attack by bromide ion on a (jt-allene)pal-ladium(II) complex, do afford products with higher oxidation state and are discussed below. These reactions proceed via a fairly stable (jt-allyl)palladium intermediate. Mechanistically, the reaction involves three discrete steps (1) generation of the jt-allyl complex from allene, halide ion and palladium(II) [2] (2) occasional isomeriza-... [Pg.973]

The reaction of an allene with an aryl- or vinylpalladium(II) species is a widely used way of forming a Jt-allyl complex. Subsequent nucleophilic attack on this intermediate gives the product and palladium(O) (Scheme 17.1). Oxidative addition of palladium ) to an aryl or vinyl halide closes the catalytic cycle that does not involve an overall oxidation. a-Allenyl acids 27, however, react with palladium(II) instead of with palladium(O) to afford cr-vinylpalladium(II) intermediates 28 (Scheme 17.12). These cr-complexes than react with either an allenyl ketone [11] or with another alle-nyl acid [12] to form 4-(3 -furanyl)butenolides 30 or -dibutenolides 32, respectively. [Pg.981]

Examination of the reactivity of acyclic (diene)Fe(CO)3 complexes indicates that this nucleophilic addition is reversible. The reaction of (C4H6)Fe(CO)3 with strong carbon nucleophiles, followed by protonation, gives olefinic products 195 and 196 (Scheme 49)187. The ratio of 195 and 196 depends upon the reaction temperature and time. Thus, for short reaction time and low temperature (0.5 h, —78 °C) the product from attack at C2 (i.e. 195) predominates while at higher temperature and longer reaction time (2 h, 0 °C) the product from attack at Cl (i.e. 196) predominates. This selectivity is rationalized by kinetically controlled attack at the more electron-poor carbon (C2) at low temperature. Nucleophilic attack is reversible and, under conditions where an equilibrium is established, the thermodynamically more stable (allyl)Fe(CO)3" is favored. The regioselectivity for nucleophilic attack on substituted (diene)Fe(CO)3 complexes has been reported187. The... [Pg.951]

Liebeskind and coworkers have examined the reactivity of (2//-pyran)Mo(CO)2Cp+ cations 210, which may be prepared in optically active form from carbohydrate precursors. Nucleophilic attack on cation 210 occurs at the diene terminus bonded to the ring oxygen to give jr-allyl complexes 51 (Scheme 53)85. Hydride abstraction from 51 gives the cation 54 addition of a second nucleophilie occurs regioselectively to give... [Pg.956]

MgBr2-mediated asymmetric nucleophilic addition of Grignard reagents and allyl-tributyltin to aldehydes bearing sugar-derived jS- or y-tetrahydropyranyloxy chiral auxiliaries designed to complex with MgBt2 has been achieved. ... [Pg.370]

The RLi homochiral ligand complexes are seldom used for the base-promoted isomerization of oxiranes into allylic alcohols because their poor chemoselectivity lead to complex mixtures of products. As examples, the treatment of cyclohexene oxide by a 1 1 i-BuLi/(—)-sparteine mixture in ether at low temperature provides a mixture of three different products arising respectively from -deprotonation (75), a-deprotonation (76) and nucleophilic addition (77) (Scheme 32) . When exposed to similar conditions, the disubstituted cyclooctene oxide 78 affords a nearly 1 1 mixture of a- and -deprotonation products (79 and 80) with moderate ee (Scheme 32, entry 1). Further studies have demonstrated that the a//3 ratio depends strongly on the type of ligand used (Scheme 32, entry 1 vs. entry 2) . ... [Pg.1190]

Reactions by Other Nucleophiles As in the case of the formal cycloadditions of alkenes to allyl cations, the addition of alkenes to gold(I)-activated allenes generates intermediates that determine which cycloaduct formed. Based on this hypothesis, Toste et al. recently developed enantiorich bicycle-[3.2.0] structures by [2+2]-cycloaddition reaction catalyzed by chiral biarylphosphinegold(I) complexes [51]. [Pg.438]

The development of methods to effect nucleophilic addition to carbon-carbon double bonds by prior activation with metal cations has been applied, at least in a preliminary way, as a method of pyrrole ring closure. The conversion of butadienes to N-substituted pyrroles can be accomplished in two stages. In acetic add, 1,4-dienes react with PdnCl2 to give tr-allyl complexes with introduction of acetate at C-4. The ir-allyl complexes then react with amines to give a l-amino-4-acetoxy-2-butene (equation 70). When the addition of the amine is carried out in the presence of a silver salt and triphenylphosphine, a pyrrole is isolated, probably by cyclization of the amino-substituted allyl-Pd complex (equation 71) (81CC59). Although this procedure is attractive in terms of the simplicity of the... [Pg.330]


See other pages where Allyl complexes nucleophilic addition is mentioned: [Pg.20]    [Pg.3573]    [Pg.439]    [Pg.571]    [Pg.47]    [Pg.7]    [Pg.1329]    [Pg.65]    [Pg.73]    [Pg.672]    [Pg.433]    [Pg.436]    [Pg.720]    [Pg.726]    [Pg.97]    [Pg.955]    [Pg.177]    [Pg.555]    [Pg.84]    [Pg.73]    [Pg.318]   
See also in sourсe #XX -- [ Pg.90 , Pg.400 , Pg.401 , Pg.402 ]




SEARCH



Allyl addition

Allylation complexes

Allylation nucleophiles

Allylic addition

Complex allyl

Complexing additives

Metal-allyl complexes Nucleophilic addition

Nucleophiles complexes

Nucleophilic complexes

© 2024 chempedia.info