Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne complexes nucleophilic attack

Hydroaminations occurring by nucleophilic attack on ir-ligands are the oldest class of hydroamination and are discussed first. A mechanism for the hydroamination of alk-enes and alkynes catalyzed by palladium(II) complexes is shown in Scheme 16.16. By this pathway, coordination of the alkene or alkyne through the -ir-system occurs to generate a cationic or electron-poor, neutral metal-olefin or metal-alkyne complex. Nucleophilic attack of the amine on the coordinated olefin or alkyne then occurs. Nucleophilic attack on coordinated olefins and alkynes is presented in detail in Chapter 11. As noted in Chapter 11, this nucleophilic attack occurs at the internal position of an alkene or alkyne. [Pg.713]

The excellent ability of late transition metal complexes to activate alkynes to nucleophilic attack has made them effective catalysts in hydroamination reactions. The gold(l)-catalyzed cyclizations of trichloroacetimidates 438, derived from homopropargyl alcohols, furnished 2-(trichloromethyl)-5,6-dihydro-4f/-l,3-oxazines 439 under exceptionally mild conditions (Equation 48). This method was successfully applied to compounds possessing aliphatic and aromatic groups R. With R = Ph, cyclization resulted in formation of 439 with complete (Z)-stereoselectivity <2006OL3537>. [Pg.431]

In the Au(I) catalysis of electron-poor alkynes such as 4, the catalytically active species is likely to be a cationic ligand-stabilized gold(I) Jt-complex, as in previously reported additions of oxygen nucleophiles to alkynes [5], Gold catalysts are very soft and thus carbophilic rather than oxophilic. On the basis of this assumption a plausible mechanism can be formulated as shown in Scheme 6. The cationic or strongly polarized neutral Au(I)-catalyst coordinates to the alkyne, and nucleophilic attack of the electron-rich arene from the opposite side leads to the formation of a vinyl-gold intermediate 7 which is stereospecifically protonated with final formation of the Z-olefm 8 [2, 4]. Regioselectivity is dominated by elec-... [Pg.159]

In contrast to the preceding mechanisms proposed for [3,3]-sigmatropic shifts, the mechanism of the silver-catalyzed oxy-Cope rearrangement was proposed as a stepwise process (Scheme 3.37). As usual, the reaction would be initiated by silver coordination to the alkyne moiety. Nucleophilic attack of this complex by the double bond would then lead to a cyclic cationic vinylsilver intermediate. Fragmentation would then give the dienone. [Pg.99]

Addition of an electrophilic metal salt [e.g., PtCl2 (348), AUCI3 (349), GaClg (350), or InCla (351)] or metal complex to a biphenyl derivative bearing an alkyne unit at one of its ortho positions leads to an equilibrium between the alkyne and the corresponding complex. Nucleophilic attack by adjacent aromatic ring leads to bond formation with... [Pg.398]

Pd-catalyzed reactions involving attack on palladium-alkene, palladium-alkyne, and related -TT-complexes by carbon nucleophiles are discussed in Sect. V.2.3. Complexation of alkenes and alkynes to palladium(II) compounds activates alkenes and alkynes to nucleophilic attack. In general, when Pd(II) salts are employed, stoichiometric quantities of Pd... [Pg.652]

Nucleophilic addition to the q -alkyne ligand in the corresponding cationic Fp complexes affords alkenyl-Fp complexes (Scheme 4-28). Unsymmetrical alkynes often lead to mixtures of regioisomers. In case of a methoxymethyl-methyl-substituted alkyne, the nucleophile attacks at the methyl site. The stereochemical outcome of the nucleophilic addition to alkyne-Fp complexes depends on the basicity of the nucleophile. Less basic nucleophiles give the trans-dXkeny complexes, whereas stronger bases attack primarily at the carbonyl ligand, which leads to cis complexes or metallacycles (Scheme 4-76). ... [Pg.600]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

The diamagnetic ylide complexes 34 have been obtained from the reaction of electron-deficient complexes [MoH(SR)3(PMePh2)] and alkynes (HC=CTol for the scheme), via the formal insertion of the latter into the Mo-P bond. The structural data show that 34 corresponds to two different resonance-stabilized ylides forms 34a (a-vinyl form) and 34b (carbene ylide form) (Scheme 17) [73]. Concerning the group 7 recent examples of cis ylide rhenium complexes 36 cis-Me-Re-Me) have been reported from the reaction of the corresponding trans cationic alkyne derivatives 35 with PR" via a nucleophilic attack of this phosphine at the alkyne carbon. [Pg.54]

The postulated mechanism for the reaction involves activation of the alkyne by jt-coordination to the cationic (IPr)Au% followed by direct nucleophilic attack by the electron-rich aromatic ring to form product 111. Alternatively, two 1,2-acetate migrations give the activated aUene complex, which can be cyclised to product 110 by nucleophilic attack of the aromatic ring on the activated aUene (Scheme 2.21) [92]. [Pg.48]

Amouri and coworkers also demonstrated that the nucleophilic reactivity of the exocyclic carbon of Cp Ir(T 4-QM) complex 24 could be utilized to form carbon -carbon bonds with electron-poor alkenes and alkynes serving as electrophiles or cycloaddition partners (Scheme 3.17).29 For example, when complex 24 was treated with the electron-poor methyl propynoate, a new o-quinone methide complex 28 was formed. The authors suggest that the reaction could be initiated by nucleophilic attack of the terminal carbon of the exocyclic methylene group on the terminal carbon of the alkyne, generating a zwitterionic oxo-dienyl intermediate, followed by proton transfer... [Pg.78]

Recently, Ohe and IJemura reported a novel approach to the catalytic cyclopropanation of alkenes via 2-furyl178 179 or 2-pyrrolyl carbenoids180 that originate from the intramolecular nucleophilic attack of a carbonyl oxygen or an imine nitrogen (ene-yne-ketone and ene-yne-imine precursor, respectively) on a 7t-alkyne complex or a cationic cr-vinyl complex. Initially, the group 6 complexes like Cr(CO)s were used. Soon it was found that a series of late transition... [Pg.321]

Many other reactions designed to trap intermediate vinylketene complexes are known. Dotz has used alkynes with a pendant alcohol to produce the butyrolactones E-31 and Z-31 in a 70 30 ratio and 34% yield.16 These are formed by the nucleophilic attack of the pendant alcohol on the ketene... [Pg.282]

We have already reviewed the activation of alkenes, alkynes, and carbon monoxide towards nucleophilic attack. The heterolytic splitting of dihydrogen is also an example of this activation it will be discussed in Section 2.10. The reaction of nucleophiles with silanes co-ordinated to an electrophilic metal can be regarded as an example of activation towards nucleophilic attack (Figure 2.28). Complexes of Ir(III) and Pd(II) give t.o.f. for this reaction as high as 300,000 mol.mol. fh"1. [Pg.46]

In contrast, soft carbon nucleophiles attack at C5. The reaction of 23 with diethylaminopropyne yields alkenyl(amino)pentatetraenylidene complexes (34) by insertion of the C = C bond of the alkyne into the C4=C5 bond of the pentatetrae-nylidene ligand [9]. The reaction is initiated by a nucleophilic attack of the ynamine at C5 followed by ring closure and electrocyclic ring opening (Scheme 3.34). Complexes 34 are obtained as mixtures of s-cis/s-trans isomers. [Pg.121]

The proposed mechanism involves the formation of ruthenium vinylidene 97 from an active ruthenium complex and alkyne, which upon nucleophilic attack of acetic acid at the ruthenium vinylidene carbon affords the vinylruthenium species 98. A subsequent intramolecular aldol condensation gives acylruthenium hydride 99, which is expected to give the observed cyclopentene products through a sequential decarbonylation and reductive elimination reactions. [Pg.211]

Lee s group has also reported ruthenium-catalyzed carbonylative cyclization of 1,6-diynes. The noteworthy aspect of this cyclization is the unprecedented anti nucleophile attack on a 7i-alkyne complex bearing a ruthenium vinylidene functionality. A catalytic system based on [Ru(p-cymene)Cl2]2/P(4-F-C6H4)3/DMAP was active for the cyclization of 1,6-diyne 103 and benzoic acid in dioxane at 65 °Cto afford cydohexenylidene enol ester 104a in 74% yield after 24h [34]. Additional examples are shown in Scheme 6.35. [Pg.213]

The same ethylidene ruthenium complex, as well as its iron congener, is alternatively obtained through direct protonation of the dimetallacycles 64a (M = Fe) and 64b (M = Ru) (64). In this case, the carbonyl alkyne carbon-carbon bond is broken irreversibly to give the cationic /x, 17s-vinyl complexes 65a and 65b, which undergo nucleophilic attack by hydride (NaBFLi) to produce complexes of methylcarbene (63a,b) (Scheme 21a). Deuterium-labeling experiments prove that the final compounds arise from initial hydride addition to the /3-vinylic carbon of 65. However, isolation of small amounts of the 7j2-ethylene complex 66 indicates that hydride attack can also occur at the a-vinylic carbon (64). [Pg.188]

Although alkynes are highly reactive toward a wide range of transition metals, very few instances of metal-catalyzed reactions of nucleophiles with alkynes are known. This is, in part, because most stable alkyne-metal complexes are inert to nucleophilic attack, while most unstable alkyne-metal complexes tend to oligomerize alkynes faster than anything else. Hence synthetic methodology involving this process is quite limited. [Pg.567]

As noted in the introduction, in contrast to attack by nucleophiles, attack of electrophiles on saturated alkene-, polyene- or polyenyl-metal complexes creates special problems in that normally unstable 16-electron, unsaturated species are formed. To be isolated, these species must be stabilized by intramolecular coordination or via intermolecular addition of a ligand. Nevertheless, as illustrated in this chapter, reactions of significant synthetic utility can be developed with attention to these points. It is likely that this area will see considerable development in the future. In addition to refinement of electrophilic reactions of metal-diene complexes, synthetic applications may evolve from the coupling of carbon electrophiles with electron-rich transition metal complexes of alkenes, alkynes and polyenes, as well as allyl- and dienyl-metal complexes. Sequential addition of electrophiles followed by nucleophiles is also viable to rapidly assemble complex structures. [Pg.712]

This is further indicated in the reactions of 3-butyn-l-ol with [Fe( /2-CH2=CMe2)(CO)2( -C5H5)]+, which afford a mixture of dihydrofuran complex (64) and the oxacyclopentylidene complex (65) (84). The formation of these two derivatives involves a common tp-alkyne intermediate, which either forms 64 directly by internal nucleophilic attack of the oxygen on the complexed C=C triple bond, or rearranges to the vinylidene. This forms 65 by a similar attack of the hydroxy group on the a-carbon, followed... [Pg.90]


See other pages where Alkyne complexes nucleophilic attack is mentioned: [Pg.733]    [Pg.248]    [Pg.237]    [Pg.376]    [Pg.230]    [Pg.218]    [Pg.344]    [Pg.667]    [Pg.714]    [Pg.253]    [Pg.60]    [Pg.71]    [Pg.4]    [Pg.39]    [Pg.146]    [Pg.180]    [Pg.218]    [Pg.225]    [Pg.496]    [Pg.900]    [Pg.344]    [Pg.921]    [Pg.383]    [Pg.567]    [Pg.21]    [Pg.248]    [Pg.171]    [Pg.21]   
See also in sourсe #XX -- [ Pg.434 ]




SEARCH



Alkyne complexe

Alkyne complexes

Alkynes nucleophilic attack

Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophiles complexes

Nucleophilic attack

Nucleophilic complexes

© 2024 chempedia.info