Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkynes nucleophilic attack

In the case of the attacks of neutral molecules on alkynes, nucleophilic attack is often difficult to distinguish from molecular cycloaddition or electrophilic initiation. Reaction (7) is typical of many which could equally as well be formulated as beginning with a dipolar cycloaddition or an acyclic zwitterion Detailed mechanism of these cycloaddition-elimination reactions remains to be explored... 3 . [Pg.299]

When coordinated to a metal, alkyne and vinylidene ligands show a marked difference in reactivity (Scheme 3.1). While coordination of either tautomer to a cationic metal center increases their electrophilicity, the site of nucleophilic attack varies between alkynes and vinylidenes. In the case of alkynes, nucleophilic attack follows Markovnikov s rule, whereas for vinylidenes, an examination of the frontier molecular orbitals demonstrates that the lowest unoccupied molecular orbital (LUMO) is located on the metal-bound a-carbon (Scheme 3.2). The net result of nucleophilic attack is formal anti-Markovnikov addition. A typical example of this difference in reactivity is that the coordination of alkyne and vinylidene ligands to suitable metal complexes may catalyze the nucleophilic attack of water to give ketones and aldehydes respectively [16]. [Pg.43]

One example of nucleophilic attack by a rr-electron system on a sulfur atom of a thiirane 1-oxide is shown in Scheme 51. S-Alkylthiirenium ions react with tetramethylethylene to transfer the S-alkyl group yielding the alkyne and an S-alkyl-2,2,3,3-tetramethylthiiranium ion (79MI50600). [Pg.155]

Fluorinated alkenes and alkynes are highly activated toward nucleophilic attack and reaction with bifunctional nucleophiles is a fruitful area for the synthesis of heterocycles. A review on perfluoroalkyl(aryl)acety-lenes contains many examples (91RCR501). [Pg.10]

The simple hexaalkylditins, RsSnSnRs, do not disproportionate on heating, but, in oxolane (tetrahydrofuran) or acetonitrile in the presence of a base such as a Grignard reagent, or in the more strongly basic solvent hexamethylphosphoric triamide (HMPT), disproportionation readily occurs at room temperature, and, in HMPT, addition occurs to such alkynes as phenylacetylene and diphenylbutadiyne. The disproportionation is considered to proceed by nucleophilic attack upon tin (259, 260), e.g.,... [Pg.21]

When thiols are added to substrates susceptible to nucleophilic attack, bases catalyze the reaction and the mechanism is nucleophilic. These substrates may be of the Michael type or may be polyhalo alkenes or alkynes. As with the free-radical mechanism, alkynes can give either vinylic thioethers or dithioacetals ... [Pg.999]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

In certain cases, Michael reactions can take place under acidic conditions. Michael-type addition of radicals to conjugated carbonyl compounds is also known.Radical addition can be catalyzed by Yb(OTf)3, but radicals add under standard conditions as well, even intramolecularly. Electrochemical-initiated Michael additions are known, and aryl halides add in the presence of NiBr2. Michael reactions are sometimes applied to substrates of the type C=C—Z, where the co-products are conjugated systems of the type C=C—Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this... [Pg.1024]

The diamagnetic ylide complexes 34 have been obtained from the reaction of electron-deficient complexes [MoH(SR)3(PMePh2)] and alkynes (HC=CTol for the scheme), via the formal insertion of the latter into the Mo-P bond. The structural data show that 34 corresponds to two different resonance-stabilized ylides forms 34a (a-vinyl form) and 34b (carbene ylide form) (Scheme 17) [73]. Concerning the group 7 recent examples of cis ylide rhenium complexes 36 cis-Me-Re-Me) have been reported from the reaction of the corresponding trans cationic alkyne derivatives 35 with PR" via a nucleophilic attack of this phosphine at the alkyne carbon. [Pg.54]

It was previously observed that with a catalytic amount of FeCls, benzylic alcohols were rapidly converted to dimeric ethers by eliminating water (Scheme 14). In the presence of an alkyne this ether is polarized by FeCls and generates an incipient benzylic carbocation. The nucleophilic attack of the alkyne moiety onto the resulting benzyl carbocation generated a stable alkenyl cation, which suffer the nucleophilic attack of water (generated in the process and/or from the hydrated... [Pg.11]

The reaction proceeds with isolated double bonds and electron-rich alkynes. Electron-withdrawing groups in the acetylene moiety decelerated the reaction. A plausible mechanism implies the activation of the olefin by coordination of the metal triflate followed by nucleophilic attack of the acetylene or acetylide (Scheme 31). [Pg.20]

The postulated mechanism for the reaction involves activation of the alkyne by jt-coordination to the cationic (IPr)Au% followed by direct nucleophilic attack by the electron-rich aromatic ring to form product 111. Alternatively, two 1,2-acetate migrations give the activated aUene complex, which can be cyclised to product 110 by nucleophilic attack of the aromatic ring on the activated aUene (Scheme 2.21) [92]. [Pg.48]

Since activation of the N-H bond of PhNHj by Ru3(CO)i2 has been reported to take place under similar conditions [306], it has been proposed that the reaction mechanism involves (i) generation of an anUido ruthenium hydride, (ii) coordination of the alkyne, (iii) intramolecular nucleophilic attack of the nitrogen lone pair on the coordinated triple bond, and (iv) reductive ehmination of the enamine with regeneration of the active Ru(0) center [305]. [Pg.128]

The authors proposed the conventional nucleophilic attack by an SH group to the triple bond of the alkyne coordinating to Pd(II) [path (a) in Scheme 7-3]. [Pg.222]

The most synthetically valuable method for converting alkynes to ketones is by mercuric ion-catalyzed hydration. Terminal alkynes give methyl ketones, in accordance with the Markovnikov rule. Internal alkynes give mixtures of ketones unless some structural feature promotes regioselectivity. Reactions with Hg(OAc)2 in other nucleophilic solvents such as acetic acid or methanol proceed to (3-acetoxy- or (3-methoxyalkenylmercury intermediates,152 which can be reduced or solvolyzed to ketones. The regiochemistry is indicative of a mercurinium ion intermediate that is opened by nucleophilic attack at the more positive carbon, that is, the additions follow the Markovnikov rule. Scheme 4.8 gives some examples of alkyne hydration reactions. [Pg.335]

Amouri and coworkers also demonstrated that the nucleophilic reactivity of the exocyclic carbon of Cp Ir(T 4-QM) complex 24 could be utilized to form carbon -carbon bonds with electron-poor alkenes and alkynes serving as electrophiles or cycloaddition partners (Scheme 3.17).29 For example, when complex 24 was treated with the electron-poor methyl propynoate, a new o-quinone methide complex 28 was formed. The authors suggest that the reaction could be initiated by nucleophilic attack of the terminal carbon of the exocyclic methylene group on the terminal carbon of the alkyne, generating a zwitterionic oxo-dienyl intermediate, followed by proton transfer... [Pg.78]

Protonic acid and Lewis acids can activate carbonyls to facilitate the addition of nucleophile attacks in aqueous media. The Prins reaction, reaction with alkyne, and Friedel-Crafts-type reactions have been discussed in related chapters in detail. [Pg.281]

In the reaction of 1 with alkynes possessing electron-withdrawing substituents, the corresponding silacyclopropene derivatives 66 and 67 are formed, as described in Scheme 23.29 An unexpected pathway was observed in the reaction with the electron-poor hexafluorobutyne(2) the X-ray characterized heterocycle 68 was most likely obtained by nucleophilic attack of 1 at the triple bond. A subsequent shift of a fluorine atom from carbon to silicon creates an allene-type molecule which was stabilized by a [2 + 2] cycloaddition process involving a double bond from the pentamethylcyclopentadienyl unit, as described in Scheme 24.33... [Pg.24]

Recently, Ohe and IJemura reported a novel approach to the catalytic cyclopropanation of alkenes via 2-furyl178 179 or 2-pyrrolyl carbenoids180 that originate from the intramolecular nucleophilic attack of a carbonyl oxygen or an imine nitrogen (ene-yne-ketone and ene-yne-imine precursor, respectively) on a 7t-alkyne complex or a cationic cr-vinyl complex. Initially, the group 6 complexes like Cr(CO)s were used. Soon it was found that a series of late transition... [Pg.321]

Alkyne dipolarophiles such as methyl propiolate or DMAD reacted with ylides derived from [l,2,3]triazolo[l,5-tf]-pyridines, but the mechanism proposed involved a Michael addition and subsequent nucleophilic attack rather than a concerted [4+2] cycloaddition <1996T10519> (see Section 11.13.8). [Pg.600]

Many other reactions designed to trap intermediate vinylketene complexes are known. Dotz has used alkynes with a pendant alcohol to produce the butyrolactones E-31 and Z-31 in a 70 30 ratio and 34% yield.16 These are formed by the nucleophilic attack of the pendant alcohol on the ketene... [Pg.282]

We have already reviewed the activation of alkenes, alkynes, and carbon monoxide towards nucleophilic attack. The heterolytic splitting of dihydrogen is also an example of this activation it will be discussed in Section 2.10. The reaction of nucleophiles with silanes co-ordinated to an electrophilic metal can be regarded as an example of activation towards nucleophilic attack (Figure 2.28). Complexes of Ir(III) and Pd(II) give t.o.f. for this reaction as high as 300,000 mol.mol. fh"1. [Pg.46]

A development of the last two decades is the use of Wacker activation for intramolecular attack of nucleophiles to alkenes in the synthesis of organic molecules [9], In most examples, the nucleophilic attack is intramolecular, as the rates of intermolecular reactions are very low. The reaction has been applied in a large variety of organic syntheses and is usually referred to as Wacker (type) activation of alkene (or alkynes). If oxygen is the nucleophile, it is called oxypalladation [10], Figure 15.4 shows an example. During these reactions the palladium catalyst is often also a good isomerisation catalyst, which leads to the formation of several isomers. [Pg.324]

This reaction is quite different from the other P-H addition reactions in that it involves external nucleophilic attack of HPPh2 on the vinylidene ligand as shown in Scheme 13. The ZIE ratio depends on the structures of the substrate and the catalyst. Ru-Cp" (Cp =77 -CsMes) species selectively forms the Z isomer while Ru-Cp (Cp r -CsHs) favors the E isomer. Since the key intermediate is the vinylidene species that has an electrophilic carbon, the reaction is applicable to other alkynes that are vinylidene precursors. Thus, phenylacetylene also reacts similarly to give Ph2PCH=CHPh ZIE=93I7), while internal alkynes are totally unreactive. [Pg.33]


See other pages where Alkynes nucleophilic attack is mentioned: [Pg.108]    [Pg.44]    [Pg.108]    [Pg.44]    [Pg.95]    [Pg.152]    [Pg.166]    [Pg.617]    [Pg.619]    [Pg.376]    [Pg.32]    [Pg.167]    [Pg.982]    [Pg.201]    [Pg.230]    [Pg.218]    [Pg.110]    [Pg.128]    [Pg.230]    [Pg.113]    [Pg.344]    [Pg.714]    [Pg.253]    [Pg.159]    [Pg.18]    [Pg.60]    [Pg.71]   
See also in sourсe #XX -- [ Pg.551 , Pg.552 , Pg.553 , Pg.554 , Pg.555 , Pg.556 , Pg.557 , Pg.558 , Pg.559 , Pg.560 , Pg.561 , Pg.562 , Pg.563 , Pg.564 , Pg.565 , Pg.566 , Pg.567 ]




SEARCH



Alkyne complexes nucleophilic attack

Alkynes, nucleophilic attack upon

Nucleophile Nucleophilic attack

Nucleophile attack

Nucleophiles attack

Nucleophilic attack

© 2024 chempedia.info