Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne anions acetylides

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

The conjugate base of an alkyne is an alkyne anion (older literature refers to them as acetylides), and it is generated by reaction with a strong base and is a carbanion. It funetions as a nucleophile (a source of nucleophilic carbon) in Sn2 reactions with halides and sulfonate esters. Acetylides react with ketones, with aldehydes via nucleophilic acyl addition and with acid derivatives via nucleophilic acyl substitution. Acetylides are, therefore, important carbanion synthons for the creation of new carbon-carbon bonds. Some of the chemistry presented in this section will deal with the synthesis of alkynes and properly belongs in Chapter 2. It is presented here, however, to give some continuity to the discussion of acetylides. [Pg.575]

As noted above, alkyne anions are very useful in Sn2 reactions with alkyl halides, and in acyl addition reactions to a carbonyl.46 Alkyl halides and sulfonate esters (tosylates and mesylates primarily) serve as electrophilic substrates for acetylides. A simple example is taken from Kaiser s synthesis of niphatoxin B, in which propargyl alcohol (36) is treated with butyllithium and then the OTHP derivative of 8-bromo-1-octanol to give a 47% yield of 37.48... [Pg.579]

As with cyanide, Sn2 reactions of alkyne anions can be done with substrates other than halides or sulfonate esters. Epoxides are opened by acetylides at the less sterically hindered carbon to give an alkynyl alcohol. A synthetic example is the reaction of epoxide 38 with the indicated lithium alkyne anion gave an 85% yield of 39, an intermediate in the Sinha et al. synthesis of squamotacin.49... [Pg.579]

The other major synthetic use of alkyne anions is their reaction with ketones and aldehydes to give an alkynyl alcohol via nucleophilic acyl addition. The lithium salt of 1-propyne, for example, reacted with aldehyde 40 to give alcohol 41 as part of Smith s synthesis of (+)-acutiphycin.50 The reaction is selective for ketones and aldehydes in the presence of acid derivatives, if the acetylide is not present in large excess. l... [Pg.579]

In the synthesis of propargylic alcohols, we saw the reaction of an alkynyl nucleophile (either the anion RC=CNa or the Grignard RC CMgBr, both prepared from the alkyne RC CH) with a carbonyl electrophile to give an alcohol product. Such acetylide-type nucleophiles will undergo Sn2 reactions with alkyl halides to give more substituted alkyne products. With this two-step sequence (deprotonation followed by alkylation), acetylene can be converted to a terminal alkyne, and a terminal alkyne can be converted to an internal alkyne. Because acetylide anions are strong bases, the alkyl halide used must be methyl or 1° otherwise, the E2 elimination is favored over the Sn2 substitution mechanism. [Pg.94]

Explain why butyllithium, CH3CH2CH2CH2 Li is an effective base for converting alkynes to acetylide anions. [Pg.423]

Terminal alkynes are only reduced in the presence of proton donors, e.g. ammonium sulfate, because the acetylide anion does not take up further electrons. If, however, an internal C—C triple bond is to be hydrogenated without any reduction of terminal, it is advisable to add sodium amide to the alkyne solution Hrst. On catalytic hydrogenation the less hindered triple bonds are reduced first (N.A. Dobson, 1955, 1961). [Pg.100]

These compounds are sources of the nucleophilic anion RC=C and their reaction with primary alkyl halides provides an effective synthesis of alkynes (Section 9 6) The nucleophilicity of acetylide anions is also evident m their reactions with aldehydes and ketones which are entirely analogous to those of Grignard and organolithium reagents... [Pg.597]

It looks as though all that is needed is to prepare the acetylenic anion, then alkylate it with methyl iodide (Section 9.6). There is a complication, however. The carbonyl group in the starting alkyne will neither tolerate the strongly basic conditions required for anion fonnation nor survive in a solution containing carbanions. Acetylide ions add to carbonyl... [Pg.723]

The most striking difference between alkenes and alkynes is that terminal alkynes are weakly acidic. When a terminal alkyne is treated with a strong base, such as sodium amide, Na+ -NH2, the terminal hydrogen is removed and an acetylide anion is formed. [Pg.270]

The negative charge and unshared electron pair on carbon make an acetylide anion strongly nucleophilic. As a result, an acetylide anion can react with an alkyl halide such as bromomethane to substitute for the halogen and yield a new alkyne product. [Pg.272]

Strategy Compare the product with the starting material, and catalog the differences. In this case, we need to add three carbons to the chain and reduce the triple bond. Since the starling material is a terminal alkyne that can be alkylated, we might first prepare the acetylide anion ol 1-pentyne, let it react with 1-bromopropane, and then reduce the product using catalytic hydrogenation. [Pg.274]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one sp-sp a bond and two p-p tt bonds. There are relatively few general methods of alkyne synthesis. Two good ones are the alkylation of an acetylide anion with a primary-alkyl halide and the twofold elimination of HX from a vicinal dihalide. [Pg.279]

Terminal alkynes are weakly acidic. The alkyne hydrogen can be removed by a strong base such as Na+ NH2 to yield an acetylide anion. An acetylide... [Pg.279]

Acetylide anion (Section 8.7) The anion formed by removal of a proton from a terminal alkyne. [Pg.1234]

DNA sequencing and. 1113 Electrospray ionization (ESI) mass spectrometry, 417-418 Electrostatic potential map, 37 acetaldehyde, 688 acetamide, 791,922 acetate ion. 43. 53, 56, 757 acetic acid. 53. 55 acetic acid dimer, 755 acetic anhydride, 791 acetone, 55, 56. 78 acetone anion, 56 acetyl azide, 830 acetyl chloride, 791 acetylene. 262 acetylide anion, 271 acid anhydride, 791 acid chloride, 791 acyl cation, 558 adenine, 1104 alanine, 1017 alanine zwitterion, 1017 alcohol. 75 alkene, 74, 147 alkyl halide, 75 alkyne. 74... [Pg.1295]

Finally, the peculiar formation of iodoalkynes from iodine and acetylenes with relatively low (< 25) pK values in liquid ammonia should be mentioned [121]. The most likely intermediates occurring are acetylide "anions" formed in very low concentrations from the acetylene and the base ammonia. The conversions proceed very slowly and iodinadon of the lithiated alkynes in the same solvent is undoubtedly a far superior method. [Pg.144]

Propargyl dianion (QF I ). This anion can be prepared by dilithiation of allene with BuLi in 1 1 ether/hexane. Use of THF (- 50°) or BuLi/TMEDA results in a mixture of propargylide and allenyl anions. The anion couples readily with alkyl and allyl halides to give terminal alkynes. The intermediate lithium acetylide can also react with various electrophiles.3 Example ... [Pg.56]

The alkyne insertion reaction is terminated by anion capture. As examples of the termination by the anion capture, the alkenylpalladium intermediate 189, formed by the intramolecular insertion of 188, is terminated by hydrogenolysis with formic acid to give the terminal alkene 192. Palladium formate 190 is formed, and decarboxylated to give the hydridopalladium 191, reductive elimination of which gives the alkene 192 [81]. Similarly the intramolecular insertion of 193 is terminated by transmetallation of 194 with the tin acetylide 195 (or alkynyl anion capture) to give the dienyne 196 [82], Various heterocyclic compounds are prepared by heteroannulation using aryl iodides 68 and 69, and internal alkynes. Although the mechanism is not clear, alkenylpalladiums, formed by insertion of alkynes, are trapped by nucleophiles... [Pg.53]

A second group of important carbon nucleophiles are the acetylide anions. These nucleophiles are generated by treating 1-alkynes with a very strong base, such as amide ion ... [Pg.370]

Remember to work backward. The target ketone has five carbons, whereas the designated starting material has only three, so it is necessary to form a carbon-carbon bond. A nucleophilic substitution reaction can be done at C-l of 1-chloropropane. so a two-carbon nucleophile that can be ultimately converted to a ketone is required. A carbon-carbon bond-forming reaction that meets these requirements is the alkylation of an acetylide anion (see Section 10.8). Once the carbon-carbon bond has been formed, hydration of the alkyne can be used to convert the triple bond to a ketone ... [Pg.432]

Reactions that form carbon-carbon bonds are extremely important in synthesis because they enable larger compounds, containing more carbons, to be constructed from smaller compounds. This requires the reaction of a carbon nucleophile with a carbon electrophile. The most important carbon nucleophiles that we have encountered so far are cyanide ion and acetylide anions (see Section 10.8). If we remember that acetylide anions can be reduced to c/.v-alkenes (see Section 11.12), then all of the addition products of this chapter are accessible from simple alkynes. [Pg.451]

First we note that it is necessary to form a carbon-carbon bond because the starting material has only two carbons and the target has seven. Because the starting material is an alkyne, we can probably use an acetylide anion as the nucleophile to form the carbon-carbon bond (see Section 10.8). How can a ketone functional group be introduced Section 11.6 described the hydration of an alkyne to produce a ketone. Our retrosynthetic analysis then becomes ... [Pg.451]

Carbon nucleophiles are very useful species because their reactions with carbon electrophiles result in the formation of carbon—carbon bonds. Section 10.8 introduced acetylide anions as nucleophiles that could be used in Sm2 reactions. These nucleophiles are prepared by reacting 1-alkynes with a strong base such as sodium amide. The relatively acidic hydrogen on the. vp-hybridized carbon is removed in this acid-base reaction ... [Pg.751]


See other pages where Alkyne anions acetylides is mentioned: [Pg.270]    [Pg.421]    [Pg.1274]    [Pg.577]    [Pg.852]    [Pg.929]    [Pg.296]    [Pg.155]    [Pg.270]    [Pg.271]    [Pg.279]    [Pg.255]    [Pg.421]    [Pg.384]    [Pg.155]   


SEARCH



Acetylide

Acetylides

Alkyne Acidity Formation of Acetylide Anions

Alkyne acetylide anions from

Alkyne anions

Alkynes synthesis in acetylide anion

© 2024 chempedia.info