Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation reactions phenols with alkyl halides

Aryl cyanates585 can be prepared by reaction of phenols with cyanogen halides in the presence of a base ArO + C1CN — ArOCN + Cl. 586 This reaction has also been applied to certain alkyl cyanates.587... [Pg.387]

Reaction of dibenzylamine with ethylene oxide affords the amino alcohol, 82. Treatment of that product with thionyl chloride gives the a-sympathetic blocking agent, dibenamine (83). (Condensation of phenol with propylene chlorohydrin (84) gives the alcohol, 85. Reaction with thionyl chloride affords the chloride (86). Use of the halide to alkylate ethanolamine affords the secondary amine (87). Alkylation of this last with benzyl chloride... [Pg.55]

The guanidine function, when attached to an appropriate lipophilic function, often yields compounds that exhibit antihypertensive activity by means of their peripheral sympathetic blocking effects. Attachment of an aromatic ring via a phenolic ether seems to fulfill these structural requirements. Alkylation of 2,6-dichlorophenol with bromochloroethane leads to the intermediate, 58. Alkylation of hydrazine with that halide gives 59. Reaction of the hydrazine with S-methylthiourea affords the guanidine, guanoclor (60). ... [Pg.117]

Extractive alkylation is used to derivatize acids, phenols, alcohols or amides in aqueous solution [435,441,448,502]. The pH of the aqueous phase is adjusted to ensure complete ionization of the acidic substance which is then extracted as an ion pair with a tetraalkylammonium hydroxide into a suitable immiscible organic solvent. In the poorly solvating organic medium, the substrate anion possesses high reactivity and the nucleophilic displacement reaction with an alkyl halide occurs under favorable conditions. [Pg.945]

Alternatively, the Sn2 nucleophilic substitution reaction between alcohols (phenols) and organic halides under basic conditions is the classical Williamson ether synthesis. Recently, it was found that water-soluble calix[n]arenes (n = 4, 6, 8) containing trimethylammonium groups on the upper rim (e.g., calix[4]arene 5.2) were inverse phase-transfer catalysts for alkylation of alcohols and phenols with alkyl halides in aqueous NaOH solution to give the corresponding alkylated products in good-to-high yields.56... [Pg.154]

In all cases, dithio-phosphorus acids can be liberated from their alkali-metal salts by reacting them with acids such as HC1. Thio-ester derivatives of the dithio-phosphorus acids can be synthesised via reaction of the acids themselves with an alcohol or phenol (Equation 26) or from reaction of their alkali-metal salt with an alkyl halide (Equation 27). [Pg.298]

In other reactions also the OH-group of the phenols shows itself to be more reactive than that of the aliphatic alcohols. Phenols, but not alcohols, react easily with diazomethane. With other alkylating agents also, such as alkyl halides, and dialkyl sulphates, the phenols react even in aqueous alkaline solution whilst the alcohols do not react under such conditions. Benzoyl derivatives, most of which crystallise readily, are excellently adapted for the characterisation of phenols (Schotten-Baumann reaction). [Pg.241]

Electron-rich carbyne complexes can react at the carbyne carbon atom with electrophiles to yield carbene complexes. Numerous examples of such reactions, mostly protonations, have been reported [519]. Depending on the nucleophilicity of the carbyne complex, such reactions will occur more or less readily. The protonation of weakly nucleophilic carbyne complexes requires the use of strong acids, such as triflic [533], tetrafluoroboric [534] or hydrochloric acid [535,536]. More electron-rich carbyne complexes can, however, even react with phenols [537,538], water [393,539], amines [418,540,541], alkyl halides, or intramolecularly with arenes (cyclometallation, [542]) to yield the corresponding carbene complexes. A selection of illustrative examples is shown in Figure 3.25. [Pg.96]

The reactions of these nucleophilic processes are usually SN2 rather than S l. The reaction rate is methyl > ethyl > isopropyl, as with the alkyl halides. As the species to be alkylated becomes more nucleophilic, alkylation becomes faster, eg, a sulfur-containing anion alkylates more quickly than a phenolic anion. [Pg.199]

Reaction between alkoxides or arox-ides and alkyl halides (Williamson) 0-14 Reaction between alkoxides or arox-ides and inorganic esters 0-15 Alkylation of alcohols or phenols with diazo compounds 0-16 Dehydration of alcohols 0-17 Transetherification 0-19 Alkylation of alcohols with onium salts... [Pg.1285]

Alkylation is a very broad reaction type and it can, depending on the nature of the alkylating agent, proceed either as a substitution or as an addition reaction. The alkylation by substitution of, for example, aromatic hydrocarbons, phenols or amines is based on the reaction with alkyl halides or alcohols. Some evidence indicates that, at least partly, the alkylation proceeds through the intermediate formation of alkenes from the alkylating agent when the reaction is conducted at atmospheric pressure and at high temperature. [Pg.334]

Silyl ethers of aliphatic alcohols are inert towards strong bases, oxidants (ozone [81], Dess-Martin periodinane [605], iodonium salts [610,611], sulfur trioxide-pyridine complex [398]), and weak acids (e.g., 1 mol/L HC02H in DCM [605]), but can be selectively cleaved by treatment with HF in pyridine or with TBAF (Table 3.32). Phenols can also be linked to insoluble supports as silyl ethers, but these are less stable than alkyl silyl ethers and can even be cleaved by treatment with acyl halides under basic reaction conditions [595], Silyl ether attachment has been successfully used for the solid-phase synthesis of oligosaccharides [600,601,612,613] and peptides [614]. [Pg.106]

Phenols attached to insoluble supports can be etherified either by treatment with alkyl halides and a base (Williamson ether synthesis) or by treatment with primary or secondary aliphatic alcohols, a phosphine, and an oxidant (typically DEAD Mitsu-nobu reaction). The second methodology is generally preferred, because more alcohols than alkyl halides are commercially available, and because Mitsunobu etherifications proceed quickly at room temperature with high chemoselectivity, as illustrated by Entry 3 in Table 7.11. Thus, neither amines nor C,H-acidic compounds are usually alkylated under Mitsunobu conditions as efficiently as phenols. The reaction proceeds smoothly with both electron-rich and electron-poor phenols. Both primary and secondary aliphatic alcohols can be used to O-alkylate phenols, but variable results have been reported with 2-(Boc-amino)ethanols [146,147]. [Pg.228]

The reactivities of aryl halides, such as the halobenzenes, are exceedingly low toward nucleophilic reagents that normally effect displacements with alkyl halides and activated aryl halides. Substitutions do occur under forcing conditions of either high temperatures or very strong bases. For example, chlorobenzene reacts with sodium hydroxide solution at temperatures around 340° and this reaction was once an important commercial process for the production of benzenol (phenol) ... [Pg.557]

It is possible to prepare esters of phenols with carboxylic acid anhydrides or acid halides, and phenyl ethers by reaction of benzenolate anion with halides, sulfate esters, sulfonates, or other alkyl derivatives that react well by the SN2 mechanism ... [Pg.1294]

Conversion of phenols into their methyl or ethyl ethers by reaction with the corresponding alkyl sulphates in the presence of aqueous sodium hydroxide affords a method which avoids the use of the more expensive alkyl halides (e.g. the synthesis of methyl 2-naphthyl ether and veratraldehyde, Expt 6.111). Also included in Expt 6.111 is a general procedure for the alkylation of phenols under PTC conditions.38,39 The method is suitable for 2,6-dialkylphenols, naphthols and various functionally substituted phenols. The alkylating agents include dimethyl sulphate, diethyl sulphate, methyl iodide, allyl bromide, epichlorohy-drin, butyl bromide and benzyl chloride. [Pg.985]

Merker, R. L. Scott, M. J. The reaction of alkyl halides with carboxylic acids and phenols in the presence of tertiary amines./. Org. Chem. 1961, 26, 5180-5182. [Pg.260]

Alcohols and phenols are also weak bases. They can be protonated on the oxygen by strong acids. This reaction is the first step in the acid-catalyzed dehydration of alcohols to alkenes and in the conversion of alcohols to alkyl halides by reaction with hydrogen halides. Alkyl halides can also be prepared from alcohols to alkyl halides by reaction with hydrogen halides. Alkyl halides can also be prepared from alcohols by reaction with thionyl chloride or phosphorus halides. [Pg.123]

The allylic halide needed for the alkylation is easily made by some aldol or Wittig-style reaction to give 63 followed by reduction and conversion of OH to Br. Alkylation of phenols (p a 10) with allylic halides is very easy as a weak base such as carbonate is enough and the Claisen rearrangement merely requires heating.15... [Pg.265]

Phenols can be converted into esters by reaction with acid chlorides or acid anhydrides and into ethers by reaction with alkyl halides in the presence of base (Following fig.). These reactions can be done under milder conditions than those used for alcohols due to the greater acidity of phenols. Thus phenols can be converted to phenoxide ions with sodium hydroxide rather than metallic sodium. [Pg.15]

Williamson synthesis of phenyl alkyl and dialkyl ethers. Phenols react with alkyl halides in 20% aqueous NaOH containing 1 equiv. of this surfactant at 80° to form phenolic ethers in 85-97% yield. There is no reaction in the absence of CTAB. This procedure is not useful for preparation of dialkyl ethers from alcohols and alkyl halides. Instead, the alkyl chloride, alcohol, a trace of water, and CTAB are heated in THF at 70° with NaOH (2 equiv.). [Pg.77]


See other pages where Alkylation reactions phenols with alkyl halides is mentioned: [Pg.477]    [Pg.520]    [Pg.795]    [Pg.384]    [Pg.174]    [Pg.173]    [Pg.104]    [Pg.123]    [Pg.87]    [Pg.370]    [Pg.67]    [Pg.386]    [Pg.433]    [Pg.611]    [Pg.215]    [Pg.267]    [Pg.301]    [Pg.807]    [Pg.1301]    [Pg.157]    [Pg.241]    [Pg.21]    [Pg.178]    [Pg.351]    [Pg.15]   
See also in sourсe #XX -- [ Pg.7 , Pg.96 ]




SEARCH



Alkyl halides reactions

Alkyl halides, alkylation reactions

Alkyl reaction with

Alkylation phenols

Alkylation with alkyl halides

Alkylation with phenol

Phenol phenolation reaction

Phenol reactions

Phenolates, reactions

Phenolation reaction

Phenolic alkylation

Phenols alkyl halides

Phenols alkylated phenol

Phenols reactions with

Reaction with alkyl halides

Reaction with phenolates

With alkyl halides

© 2024 chempedia.info