Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl N-substituted

The possibility of applying similar intramolecular hydrogen abstraction reactions to the photoinduced polymerization of methyl methacrylate (MMA), has been tested [1] by using long-chain -alkyl N-substituted imides of 3,3, 4,4 -benzophenone tetracarboxylic dianhydride (BTDA) (Scheme 4). [Pg.130]

Alkylation by diazoalkanes gives more N-substituted product when the reaction goes through an S l transition state. Representative data are given in Table Vll-lOa. and they are discussed in Ref. 101. [Pg.395]

Alkylation of A-4-thiazoline-2-one may yield O-R or N-R derivatives according to experimental conditions. With diazomethane in ethanol O-raethylation takes place (29. 36. 214). N-Methylation is reported when a basic solution of A-4-thiazoline-2-one reacts with methyl iodide or dimethylsulfate (21, 29, 215, 216), Reaction of l-chloro-2-dimethyl-aminoethane with the sodium salt of 4 R-A-4-thiazoline-2-one (91) in alcohol, first claimed to yield the aminoalkylether (217, 218), was shown after infrared investigation to give the N-substituted derivative (92) (107), even when R Ph (Scheme 45). More probably the site of reaction in... [Pg.401]

Thiazolium salts with alkyl (103, 722), arylalkyl (116), aryl (305), or heteroaryl (96) substituents on the nitrogen have been also prepared by this procedure. As in the thiazole series, N-substituted thioamides can be formed directly in the reaction mixture from phosphorus pentasulfide and N-substituted amides (127). These methods are important in the synthesis of thiamine 102 (vitamin Bj) (Scheme 45). [Pg.212]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]

Several N-substituted pyrroHdinones eg, ethyl, hydroxyethyl and cyclohexyl, are used primarily in specialized solvent appHcations where their particular physical properties are advantageous. For example, mixtures of l-cyclohexyl-2-pyrroHdinone and water exhibit two phases at temperatures above 50°C below that temperature they are miscible in aH proportions. This phenomenon can be used to facHitate some extractive separations. Mixtures of 1-alkyl-pyrroHdinones that are derived from coconut and taHow amines can be used at lower cost in certain appHcations where they may be used instead of the pure l-dodecyl-2-pyrroHdinone and l-octadecyl-2-pyrroHdinone. [Pg.363]

Several types of nitrogen substituents occur in known dye stmetures. The most useful are the acid-substituted alkyl N-substituents such as sulfopropyl, which provide desirable solubiUty and adsorption characteristics for practical cyanine and merocyanine sensitizers. Patents in this area are numerous. Other types of substituents include N-aryl groups, heterocycHc substituents, and complexes of dye bases with metal ions (iridium, platinum, zinc, copper, nickel). Heteroatom substituents directly bonded to nitrogen (N—O, N—NR2, N—OR) provide photochemically reactive dyes. [Pg.397]

Alkylation of 737 with 738 gave 739 (81USP4252806). Reaction of 2-hydrazinoquinoline with the quaternary salts of N,N-substituted thioamides gave the hydrazones 735 whose cyclization in acetic acid gave triazoloquinolines 736 (80PJC661) (Scheme 127). [Pg.166]

Other liquid-crystalline materials that have been investigated by X-ray scattering include single- and double-chained pyridinium [33] and N-substituted 4-(5-alkyl-l,3-dioxan-2-yl)pyridinium salts [34]. In the former case, diffraction analysis allowed an explanation for the differences in mono- and di-substituted salts to be proposed. [Pg.139]

Aqueous, removable, pressure-sensitive adhesive compositions, useful for high-performance applications, comprise a mixture of a copolymer of alkyl (meth)acrylate and N-substituted (poly)amide of (meth)acrylic acid and a copolymer of alkyl (meth)acrylate and ethylenically unsaturated carboxylic acid, where at least one of the copolymers is an emulsion copolymer. Polyoxyalkyl-enes and phosphate esters may be used as surfactants [234]. [Pg.603]

M-substituted 2-pyridones can be prepared by N-alkylation, under basic conditions (pfCa of the amide proton is 11). The resulting anion can then react on either nitrogen or oxygen depending on the conditions employed [24-27]. Also, several direct methods for the construction of N-substituted 2-pyridones have been reported. Two such examples can be seen in Scheme 3 where the first example (a) is an intramolecular Dieckmann-type condensation [28] and the second (b) is a metal-mediated [2 -I- 2 + 2] reaction between alkynes with isocyanates [29,30]. [Pg.312]

The four mechanisms involving alkyl—N cleavage (the AL mechanisms) do not apply to this reaction. They are not possible for unsubstimted amides, since the only N—C bond is the acyl bond. They are possible for N-substituted and N,N-disub-stituted amides, but in these cases they give entirely different products and are not anude hydrolyses at all. [Pg.476]

Amides are very weak nucleophiles, far too weak to attack alkyl halides, so they must first be converted to their conjugate bases. By this method, unsubstituted amides can be converted to N-substituted, or N-substituted to N,N-disubstituted, amides. Esters of sulfuric or sulfonic acids can also be substrates. Tertiary substrates give elimination. O-Alkylation is at times a side reaction. Both amides and sulfonamides have been alkylated under phase-transfer conditions. Lactams can be alkylated using similar procedures. Ethyl pyroglutamate (5-carboethoxy 2-pyrrolidinone) and related lactams were converted to N-alkyl derivatives via treatment with NaH (short contact time) followed by addition of the halide. 2-Pyrrolidinone derivatives can be alkylated using a similar procedure. Lactams can be reductively alkylated using aldehydes under catalytic hydrogenation... [Pg.513]

N-Substituted amides can be prepared by direct attack of isocyanates on aromatic rings.The R group may be alkyl or aryl, but if the latter, dimers and trimers are also obtained. Isothiocyanates similarly give thioamides. The reaction has been carried out intramolecularly both with aralkyl isothiocyanates and acyl isothiocyanates.In the latter case, the product is easily hydrolyzable to a dicarboxylic acid this is a way of putting a carboxyl group on a ring ortho to one already there (34 is... [Pg.719]

When an a-amino acid is treated with an anhydride in the presence of pyridine, the carboxyl group is replaced by an acyl group and the NH2 becomes acylated. This is called the Dakin-West reaction The mechanism involves formation of an oxazolone. The reaction sometimes takes place on carboxylic acids even when an amino group is not present. A number of N-substituted amino acids, RCH-(NHR )COOH, give the corresponding N-alkylated products. [Pg.812]

Treatment with sodium hypochlorite or hypobromite converts primary amines into N-halo- or N,N-dihaloamines. Secondary amines can be converted to N-halo secondary amines. Similar reactions can be carried out on unsubstituted and N-substituted amides and on sulfonamides. With unsubstituted amides the N-halo-gen product is seldom isolated but usually rearranges (see 18-13) however, N-halo-N-alkyl amides and N-halo imides are quite stable. The important reagent NBS is made in this manner. N-Halogenation has also been accomplished with other reagents, (e.g., sodium bromite NaBr02) benzyltrimethylammonium tribromide (PhCH2NMe3 Br3"), and NCS. The mechanisms of these reactions involve attack by a positive halogen and are probably similar to those of 12-47 and 12-49.N-Fluorination can be accomplished by direct treatment of amines °° or... [Pg.819]

The addition of Grignard reagents to isocyanates gives, after hydrolysis, N-substituted amides. This is a very good reaction and can be used to prepare derivatives of alkyl and aryl halides. The reaction has also been performed with... [Pg.1218]

Burgess followed a similar strategy for the preparation of the salts 8 (Scheme 7). On that occasion several routes to mono-N-substituted imidazoles were explored yielding the desired compoimds in variable yields depending on the nature of the amines. The chirality was introduced via alkylating reagents 9 bearing chiral oxazolines [15]. [Pg.198]

Because esters 745 a, b of imidazole-acetic acid are unstable when stored for long periods, owing to intramolecular catalysis by the imidazole moiety, the esters should be converted into their salts or free acids and stored as such. Only tert-butyl imidazole-(4,5)acetates derived from tert-butyl 4-chloroacetoacetate seem to be stable [232, 233]. N-alkyl-substituted amidines give rise to a mixture of alkyl N-alkylimidazole-4- and 5-acetates [232, 233]. [Pg.126]

Silylation of hydroxylamine or N-alkyl or N-ethoxycarbonyUiydroxylamines is usually accomphshed, in 52-84% yield, by silylation with TCS 14/NEt3 [63, 161, 162]. Whereas the reaction of N,0-bis(trimethylsilyl)methylhydroxylamine 952 with aldehydes such as benzaldehyde, or with ketones, with to adducts such as 953, has already been mentioned at the beginning of Section 7.3 thermal and other reactions of N,0-bis(trimethylsilyl)hydroxylamine 1141 or N-substituted N,0-bis(trimethylsi-lyl)hydroxylamines 1121, 1128, 1131 are discussed in this section. [Pg.179]


See other pages where Alkyl N-substituted is mentioned: [Pg.334]    [Pg.381]    [Pg.189]    [Pg.449]    [Pg.334]    [Pg.381]    [Pg.189]    [Pg.449]    [Pg.341]    [Pg.135]    [Pg.183]    [Pg.298]    [Pg.270]    [Pg.100]    [Pg.85]    [Pg.50]    [Pg.610]    [Pg.510]    [Pg.799]    [Pg.820]    [Pg.198]    [Pg.74]    [Pg.176]    [Pg.14]    [Pg.292]    [Pg.187]    [Pg.34]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.136]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



2 N-substitution

2-Substituted alkyl 3-

Alkyl N-6 Substituted d-Lysergamides

Alkyl substitute

Azinium compounds, N-alkyl-, substituent displacement kinetics of substitution

N alkyl substituted imines

N-Alkyl substituted dithizone

N-Alkyl-substituted thiolanes

Substitution alkylation

© 2024 chempedia.info