Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl substituted acids

A study by Hoen et in collaboration with scientists from DSM indicates that the MONOPHOS derivative (D) together with added triphenylphosphine improves both the rate of reaction and enantioselectivity and may offer an improved [Pg.6]


Similar aggressive reaction conditions characterize the hydrolysis of acid chlorides, in particular when using short-chain alkyl-substituted acid chlorides such as propionic acid chloride. This fast reaction serves well as a model reaction for micro channel processing, especially for IR monitoring owing to the strong changes in the carbonyl peak absorption by reaction [21]. [Pg.418]

Another important acid derived from the corresponding unsamrated acid family is the a-alkyl substituted acid (C). This compound is used in the synthesis of Aliskiren (the active ingredient of Tektuma ) which Novartis has recently been granted FDA approval as the first-in-class renin inhibitor for control of blood pressure. It is estimated that large volumes of this intermediate will be required in the future but the best ee reported so far for production of this intermediate is 95 % as shown in Figure 1.8. ... [Pg.6]

Hydrolytic stability - Hydrolysis of esters to giye acids and alcohols is a facile reaction and can proceed at elevated temperatures in the presence of water. Hydrolysis of ester generates acid that can be very corrosive to metal components and can catalyze the base stock decomposition process. Therefore, hydrolytic stability of esters is an important issue. Much work has been carried out to improve the hydrolytic stability by varying the composition of acids and alcohols. Generally, esters made from aromatic acids or from more sterically hindered acids, such as 2-alkyl substituted acids or neo-acids, have improved hydrolytic stabilities. Proper branching of the acids protect the carbonyl ester function from the detrimental attack of water. The presence of impurity, such as trace acid or metal, can catalyze the decomposition and hydrolysis of ester. Compared to PAO or alkylaromatic base stocks, ester hydrolysis is always an issue of concern in many lubrication applications. [Pg.122]

This is because Cl is an electron withdrawing substituent. An electron releasing substituent will decrease the acidic strength. For example, the acidic character of alkyl substituted acids is in the order ... [Pg.5]

In brief, suitable hydrolysis of ethyl acetoacetate derivatives will give mono-or di-alkyl substituted acetones or acetic acids. Tri-substituted acetones or acetic acids cannot be obtained moreover, the di-substituted acetones must... [Pg.270]

Alkyl substitution produces negligible changes m acidities as do weakly elec tronegative groups attached to the ring... [Pg.998]

The term naphthenic acid, as commonly used in the petroleum industry, refers collectively to all of the carboxyUc acids present in cmde oil. Naphthenic acids [1338-24-5] are classified as monobasic carboxyUc acids of the general formula RCOOH, where R represents the naphthene moiety consisting of cyclopentane and cyclohexane derivatives. Naphthenic acids are composed predorninandy of aLkyl-substituted cycloaUphatic carboxyUc acids, with smaller amounts of acycHc aUphatic (paraffinic or fatty) acids. Aromatic, olefinic, hydroxy, and dibasic acids are considered to be minor components. Commercial naphthenic acids also contain varying amounts of unsaponifiable hydrocarbons, phenoHc compounds, sulfur compounds, and water. The complex mixture of acids is derived from straight-mn distillates of petroleum, mosdy from kerosene and diesel fractions (see Petroleum). [Pg.509]

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

An interesting biochemical method of manufacture is the utili2ation of bioengineered Fseudomonad 2isrmA (16) or Pseudomonas stut ri (17) in a culture medium to oxidi2e naphthalene or alkyl-substituted naphthalene. The metabohc oxidation products, unsubstituted or substituted sahcyhc acid. [Pg.286]

Since the pyridazine ring is generally more stable to oxidation than a benzene ring, oxidation of alkyl and aryl substituted cinnolines and phthalazines can be used for the preparation of pyridazinedicarboxylic acids. For example, oxidation of 4-phenylcinnoline with potassium permanganate yields 5-phenylpyridazine-3,4-dicarboxylic acid, while alkyl substituted phthalazines give pyridazine-4,5-dicarboxylic acids under essentially the same reaction conditions. [Pg.31]

Because the integrity of the dihydrothiazine ring and its C-4 carboxyl substituent is crucial to useful antimicrobial activity, reactions involving this part of the cephalosporin molecule are usually undesirable. The possibilities for sulfur oxidation or alkylation, substitution at C-2 which is adjacent to both sulfur and a double bond, double bond isomerization and addition reactions, and the influence of a free carboxylic acid must all be considered in designing reactions to selectively modify other cephalosporin functionalities. [Pg.291]

Nitroalkanes show a related relationship between kinetic acidity and thermodynamic acidity. Additional alkyl substituents on nitromethane retard the rate of proton removal although the equilibrium is more favorable for the more highly substituted derivatives. The alkyl groups have a strong stabilizing effect on the nitronate ion, but unfavorable steric effects are dominant at the transition state for proton removal. As a result, kinetic and thermodynamic acidity show opposite responses to alkyl substitution. [Pg.422]

Medium reactivity contaminants alcohols, ketones, organic acids, esters, alkyl-substituted aromatics, nitro-substituted aromatics, carbohydrates. [Pg.146]

During electrochemical fluorination retention of important functional groups or atoms in molecules is essential. Acyl fluorides and chlorides, but not carboxylic acids and anhydrides (which decarboxylate), survive perfluorination to the perfluorinated acid fluorides, albeit with some cyclization in longer chain (>C4) species [73]. Electrochemical fluorination of acetyl fluoride produces perfluoro-acetyl fluoride in 36-45% yields [85]. Electrochemical fluorination of octanoyl chloride results in perfluorinated cyclic ethers as well as perfluorinated octanoyl fluonde. Cyclization decreases as initial substrate concentration increases and has been linked to hydrogen-bonded onium polycations [73]. Cyclization is a common phenomenon involving longer (>C4) and branched chains. a-Alkyl-substituted carboxylic acid chlorides, fluorides, and methyl esters produce both the perfluorinated cyclic five- and six-membered ring ethers as well as the perfluorinated acid... [Pg.113]

Display and compare electrostatic potential maps for methanol, ethanol, 2-propanol and trifluoroethanol. Identify the acidic sites as those where the potential is most positive and, assuming that the more positive the potential the more acidic the site, rank the acidities of the compounds. Does increased alkyl substitution have a significant effect on acid strength What is the effect of replacing the methyl group in ethanol by a trifluoromethyl group Why Do you find a correlation between the most positive value of the potential and the experimental pKa ... [Pg.122]

In 1909, Robinson demonstrated the utility of acylamidoketones as intermediates to aryl-and benzyl-substituted 1,3-oxazoles through cyclization with sulfuric acid. Extension of sulfuric acid cyclization conditions to alkyl-substituted oxazoles can give low yields, for example 10-15% for 2,5-dimethyl-l,3-oxazole. Wiegand and Rathbum found that polyphosphoric acid can provide alkyl-substituted oxazoles 4 in yields equal to or greater than those obtained with sulfuric acid. Significantly better yields are seen in the preparation of aryl- and heteroaryl-substituted oxazoles. For example, reaction of ketoamides 5 with 98% phosphoric acid in acetic anhydride gives oxazoles 6 in 90-95% yield. ... [Pg.249]

Alkylation of the cyclization product 115 and the following hydrolysis gave 9-alkyl substituted 6-oxo-6,9-dihydroimidazo[4,5-/i]quinoline-7-carboxylic acid derivatives 119, compounds useful as antibacterials (no data) [80JAP(K)1], 4(7)-Aminobenzimidazole can react with 1,3-diketones as a bidentate nucleophile, but with 2,4-pentanedione in glacial acetic acid it gives a Combes product, l//-6,8-dimethylimidazo[4,5-/i]quinoline 120, accompanied by 4(7)-acetamido-benzimidazole (91T7459). [Pg.241]

The rupture of the oxazirane ring at the ON-bond occurring with acid treatment of the alkyl-substituted compounds is probably the result of an electronic shift initiated by the protonated oxygen (arrows as in 21). In principle, a similar rearrangement of the electronic system should also be possible initiated from the nitrogen end (22), Indeed, decomposition products similar to those of the... [Pg.95]

Disubstituted and trisubstituted isoxazoles are generally stable to alcoholic and aqueous alkali. Such stability of the ring is characteristic both of alkyl-substituted compounds and of the esters, nitriles, etc., of isoxazole carboxylic acids,for example (127 ->128). [Pg.403]

In order to achieve high yields, the reaction usually is conducted by application of high pressure. For laboratory use, the need for high-pressure equipment, together with the toxicity of carbon monoxide, makes that reaction less practicable. The scope of that reaction is limited to benzene, alkyl substituted and certain other electron-rich aromatic compounds. With mono-substituted benzenes, thepara-for-mylated product is formed preferentially. Super-acidic catalysts have been developed, for example generated from trifluoromethanesulfonic acid, hydrogen fluoride and boron trifluoride the application of elevated pressure is then not necessary. [Pg.135]

Benzene and alkyl-substituted benzenes can be hydroxylated by reaction with H2O2 in the presence of an acidic catalyst. What is the structure of the reactive electrophile Propose a mechanism for the reaction. [Pg.597]

The effect of alkyl substitution on alcohol acidity is due primarily to solvation of the alkoxide ion that results from dissociation. The more readily the alkoxide ion is solvated by water, the more stable it is, the more its formation is energetically favored, and the greater the acidity of the parent alcohol. For example, the oxygen atom of an unhindered alkoxide ion, such as that from methanol, is stericallv accessible and is easily solvated by water. The oxygen... [Pg.603]

In addition to alkyl-substituted derivatives, soluble PPPs 6 are also known today containing alkoxy groups as well as ionic side groups (carboxy and sulfonic acid functions) [18]. Schliiter et al. recently described the generation of soluble PPPs decorated with densely packed stcrically demanding dendrons on the formation of cylindrically shaped dendrimers, so-called cylinder dendrimers ] 19]. [Pg.34]

The diastereofacial selectivity of Lewis acid promoted reactions of allylsilancs with chiral aldehydes has been thoroughly investigated58. Aldehydes with alkyl substituted a-stereogenic centers react with a mild preference for the formation of Cram products, this preference being enhanced by the use of boron trifluoride-diethyl ether complex as catalyst58. [Pg.348]


See other pages where Alkyl substituted acids is mentioned: [Pg.1]    [Pg.6]    [Pg.161]    [Pg.75]    [Pg.1]    [Pg.6]    [Pg.161]    [Pg.75]    [Pg.182]    [Pg.401]    [Pg.42]    [Pg.254]    [Pg.99]    [Pg.32]    [Pg.279]    [Pg.279]    [Pg.301]    [Pg.141]    [Pg.114]    [Pg.282]    [Pg.275]    [Pg.114]    [Pg.121]    [Pg.119]    [Pg.571]   


SEARCH



2-Substituted alkyl 3-

Alkyl substitute

Substitution alkylation

© 2024 chempedia.info