Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl free catalyst

The primary initiation reaction remains unclear. A similar situation exists with other metal-alkyl free catalysts (66. 67). Polymer chain growth may be pictured to occur by a coordinated anionic mechanism (Reaction 19). [Pg.88]

The refined grade s fastest growing use is as a commercial extraction solvent and reaction medium. Other uses are as a solvent for radical-free copolymerization of maleic anhydride and an alkyl vinyl ether, and as a solvent for the polymerization of butadiene and isoprene usiag lithium alkyls as catalyst. Other laboratory appHcations include use as a solvent for Grignard reagents, and also for phase-transfer catalysts. [Pg.429]

The formation of high polymers of olefins in the presence of titanium halogenides with no specially added organometallic co-catalysts was discovered long ago [see (147), and the references therein], A complete description of various alkyl-free polymerization catalysts based on the use of transition metal chlorides may be found in the review by Boor (17), where a comparison of these catalysts with traditional two-component systems is given. [Pg.192]

Anionic complexes of boron (boronates, borinates, etc.) have been introduced as convenient reagents in cross-coupling reactions of broad scope, particularly interesting for the transfer of alkynyl and primary alkyl residues, which cannot be accomplished using the standard protocols of the Suzuki-Miyaura reaction. Readily available Ph4BNa can be used as a convenient reagent for phenylation in place of the much more expensive PhB(OH)2, and all four phenyl groups can be utilized when the reaction is carried out with a phosphine-free catalyst in aqueous solutions.244... [Pg.329]

Noyori et al. recently used ESI-MS to characterize species present in catalytically active solutions during the hydrogenation of aryl-alkyl ketones using their base-free catalyst precursors trans-[Ru((R)-tol-BINAP)((R, RJ-dpenJfHXf/ -BH ] (tol-BI-NAP = 2,2 -bis(ditolylphosphino) -1, T-binaphthyl dpen = 1,2-diphenylethylenedia-mine) in 2-propanol [9b]. Based upon ESI-MS observations, deuterium-labeling studies, kinetics, NMR observations, and other results, the authors proposed that the cationic dihydrogen complex trans-[Ru((R)-tol-BINAP)((R, R)-dpen)(H)( 2-H2)]+ is an intermediate in hydrogenations carried out in the absence of base. [Pg.367]

The strongest evidence in favor of propagation at the transition metal-alkyl bond is the existence of one-component, that is, metal-alkyl-free polymerization catalysts. Of these systems the Phillips catalyst was studied most thoroughly because of its commercial importance. Originally it was believed that Cr(VI) ions stabilized in the form of surface chromate and perhaps dichromate resulting from the interaction of Cr03 with surface hydroxyl groups above 400°C are the active species in polymerization 286,294... [Pg.756]

Otsuka et al. (110, 112) studied the polymerization of butadiene in the presence of an aged Co2(CO)8/2 MoC15 catalyst. The product obtained was predominantly an atactic poly(l,2-butadiene), the 1,2-structure being favored by low reaction temperature (e.g., at 40° C, 97% 1,2 at 30° C, > 99% 1,2). Similar experiments with a Ni(CO)4/MoCl5 catalyst yielded a polymer with 85% cis- 1,4-structure. The results of Otsuka et al. have been confirmed by Babitski and co-workers (8), who studied the polymerization of butadiene by a large number of binary catalysts, based on transition metal halide, transition metal carbonyl combinations. These systems are of interest as further examples of alkyl-free coordination polymerization catalysts for dienes (9, 15a, 109). Little is known of the origins of stereospecificity of these reactions. [Pg.163]

Standard Nd-based catalysts comprise binary and ternary systems. Binary systems consist of Nd chloride and an aluminum alkyl or a magnesium alkyl compound. In ternary catalyst systems a halide free Nd-precursor such as a Nd-carboxylate is combined with an Al- or Mg-alkyl plus a halide donor. By the addition of halide donors to halide-free catalyst systems catalyst activities and cis- 1,4-contents are significantly increased. In quaternary catalyst systems a solubilizing agent for either the Nd-salt or for the halide donor is used in addition to the components used in ternary systems. There are even more complex catalyst systems which are described in the patent literature. These systems comprise up to eight different catalyst components. [Pg.12]

Many transition metals and their compounds with organic ligands initiate the polymerization of alkenes and/or dienes. Some of them do not need any special treatment to this end while others require the presence of some organic or mineral compound or a special physical modification. In contrast to ZN catalysts, they are active without an organometal of Groups I—III. They are commonly known as metal alkyl free (MAF) catalysts. Many of their features are, of course, in common with ZN catalysts. MAF catalysts initiate stereoselectively controlled polymerization. Even less is known of their operating mechanism than that of ZN catalysts. It is assumed that propagation also occurs on the transition metal-carbon bond. [Pg.141]

Solution-polymerized SBR is made by termination-free, anionic/live polymerization initiated by alkyl lithium compounds. Other lithium compounds are suitable (such as aryl, alkaryl, aralkyl, tolyl, xylyl lithium, and ot/p-naphtyl lithium as well as their blends), but alkyl lithium compounds are the most commonly used in industry. The absence of a spontaneous termination step enables the synthesis of polymers possessing a very narrow molecular weight distribution and less branching. Carbon dioxide, water, oxygen, ethanol, mercaptans, and primary/secondary amines interfere with the activity of alkyl lithium catalysts, so the polymerization must be carried out in clean, near-anhydrous conditions. Stirred bed or agitated stainless steel reactors are widely used commercially. [Pg.2875]

The first example of a fully recyclable fluorous chiral metal-free catalyst was reported by Maruoka and coworkers, who described the enantioselective alkylation of a protected glycine derivative (Scheme 5.17) with various benzyl- and alkyl bromides, in the presence of the quaternary ammonium bromide 62 as a phase-transfer catalyst [77]. Reactions were performed in a 50% aqueous KOH/toluene biphasic system in which 62 was poorly soluble. Nevertheless, the alkylated products were obtained in good yields (from 81 to 93%), with enantioselectivity ranging from 87 to 93% ee. Catalyst 62 was recovered by extraction with FC-72, followed by evaporation of the solvent, and could be used at least three times without any loss of activity and selectivity. [Pg.203]

To the Cr catalysts belong the alkyl-free Phillips catalysts and the Cr(Tj -allyl)3 system, which produces highly linear polyethylene. [Pg.431]

Heat, light, shear, and catalyst residues tend to strip hydrogen from the polymer chain (RH) to form alkyl free radicals (R ). [Pg.35]

The reactivity of furan derivatives in palladium-catalyzed desulfitative arylation was studied. Alkyl-substituted furan derivatives were successfully coupled with a variety of benzenesulfonyl chlorides using a phosphine-free catalyst regioselective arylation at C-5 of the furan was observed in all cases (14S2515). [Pg.213]


See other pages where Alkyl free catalyst is mentioned: [Pg.124]    [Pg.82]    [Pg.87]    [Pg.131]    [Pg.124]    [Pg.82]    [Pg.87]    [Pg.131]    [Pg.36]    [Pg.931]    [Pg.14]    [Pg.855]    [Pg.527]    [Pg.39]    [Pg.753]    [Pg.754]    [Pg.788]    [Pg.134]    [Pg.3]    [Pg.256]    [Pg.298]    [Pg.856]    [Pg.36]    [Pg.169]    [Pg.428]    [Pg.4]    [Pg.38]    [Pg.37]    [Pg.94]    [Pg.39]    [Pg.139]    [Pg.1346]    [Pg.68]    [Pg.334]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Alkyl catalysts

Alkylation catalysts

Catalyst-free

Catalysts alkyl activator-free

Homogeneous catalysts metal alkyl-free

Metal-alkyl-free catalysts

© 2024 chempedia.info