Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reactions aldehydes/silyl enol ethers

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

Sc(OTf)3 is an effective catalyst in aldol reactions of silyl enol ethers with aldehydes.49 Compared with other typical rare-earth-metal (Y, Yb) trifiates, Sc(OTf)3 has the strongest activity in the reaction of 1-trimethylsiloxycyclohexane with benzaldehyde in dichloromethane. Although the reaction scarcely proceeded at —78°C in the presence of Y(OTf)3 or Yb(OTf)3, the aldol adduct was obtained in 81% yield in the presence of Sc(OTf)3 (Scheme 9). [Pg.403]

On the other hand, Ln(OTf)3 compounds, which were found to be effective catalysts for the hydroxy-methylation in aqueous media, also activate aldehydes other than formaldehyde in aldol reactions with silyl enol ethers in aqueous solvents.1121 One feature of the present reactions is that water-soluble... [Pg.5]

S. Kobayashi, L Hachiya, The Aldol Reaction of Silyl Enol Ethers with Aldehydes in Aqueous Media Tetrahedron Lett. 1992,1625-1628. [Pg.12]

S. Kobayashi, T. Wakabayashi, S. Nagayama, H. Oya-mada, Lewis Add Catalysis in MiceUar Systems. Sc(OTf)3-Catalyzed Aqueous Aldol Reactions of Silyl Enol Ethers with Aldehydes in the Presence of a Surfactant Tetrahedron Lett. 1997,38, 4559-4562... [Pg.12]

Although in the recent years the stereochemical control of aldol condensations has reached a level of efficiency which allows enantioselective syntheses of very complex compounds containing many asymmetric centres, the situation is still far from what one would consider "ideal". In the first place, the requirement of a substituent at the a-position of the enolate in order to achieve good stereoselection is a limitation which, however, can be overcome by using temporary bulky groups (such as alkylthio ethers, for instance). On the other hand, the ( )-enolates, which are necessary for the preparation of 2,3-anti aldols, are not so easily prepared as the (Z)-enolates and furthermore, they do not show selectivities as good as in the case of the (Z)-enolates. Finally, although elements other than boron -such as zirconium [30] and titanium [31]- have been also used succesfully much work remains to be done in the area of catalysis. In this context, the work of Mukaiyama and Kobayashi [32a,b,c] on asymmetric aldol reactions of silyl enol ethers with aldehydes promoted by tributyltin fluoride and a chiral diamine coordinated to tin(II) triflate... [Pg.265]

Recently it was found that the aldol reaction of silyl enol ethers with acetals or aldehydes is effectively promoted by a catalytic amount of trityl perchlorate to give the corresponding aldols in good yields (44,45). Polymer-bound trityl perchlorate also successfully catalyzed the aldol reaction (45). [Pg.288]

Carbonyl Addition Diethylzinc has been added to benzaldehyde at room temperature in the presence of an ephedra-derived chiral quat (8) to give optically active secondary alcohols, a case in which the chiral catalyst affords a much higher enantioselectivity in the solid state than in solution (47 to 48, Scheme 10.6) [30]. Asymmetric trifluoromethylation of aldehydes and ketones (49 to 50, Scheme 10.6 [31]) is accomplished with trifluoromethyl-trimethylsilane, catalyzed by a quaternary ammonium fluoride (3d). Catalyst 3d was first used by the Shioiri group for catalytic asymmetric aldol reactions from silyl enol ethers 51 or 54 (Scheme 10.6) [32]. Various other 1,2-carbonyl additions [33] and aldol reactions [34] have been reported. [Pg.740]

This procedure illustrates a general method for the preparation of crossed aldols. The aldol reaction between various silyl enol ethers and carbonyl compounds proceeds smoothly according to the same procedure (see Table I). Silyl enol ethers react with aldehydes at -78°C, and with ketones near CTC. Note that the aldol reaction of silyl enol ethers with ketones affords good yields of crossed aldols which are generally difficult to prepare using lithium or boron enolates. Lewis acids such as tin tetrachloride and boron trifluoride etherate also promote the reaction however, titanium tetrachloride is generally the most effective catalyst. [Pg.13]

The blend SnC -ZnCli is an effective catalyst in the aldol reaction of silyl enol ethers with aldehydes (Eq. 87), acetals (Eq. 88), or ketones [122]. Product antilsyn ratios vary (32 69 to 89 11). The blend also catalyzes the Michael addition of silyl enol ethers with a,/3-unsaturated ketones (Eq. 89), yielding alkylation products (84-100 %) with anti selectivity antilsyn = 55 45 to 87 23). [Pg.428]

The BINAP silver(I) complex can be further applied as a chiral catalyst in the asymmetric aldol reaction. Although numerous successful methods have been developed for catalytic asymmetric aldol reaction, most are the chiral Lewis acid-catalyzed Mukaiyama aldol reactions using silyl enol ethers or ketene silyl acetals [32] and there has been no report which includes enol stannanes. Yanagisawa, Yamamoto, and their colleagues found the first example of catalytic enantioselective aldol addition of tributyltin enolates 74 to aldehydes employing BINAP silver(I) complex as a catalyst (Sch. 19) [33]. [Pg.583]

Sc(OTf)3-catalyzed aldol reactions of silyl enol ethers with aldehydes have recently been successfully performed in micellar systems [60]. Although the reaction proceeded sluggishly in water (without organic solvents), reactivity was remarkably enhanced by the presence of a small amount of a surfactant. In these systems, versatile carbon-carbon bond-forming reactions proceeded smoothly in water without the use of organic solvents. [Pg.896]

Suzuki, T., Hirama, M. Asymmetric aldol reaction of silyl enol ethers with aldehydes promoted by the combined use of chiral diamine coordinated tin(ll) triflate and tribulyltin fluoride. Chemtracts Org. Chem. 1989, 2, 268-270. [Pg.634]

The use of Ln(OTf)3 in the activation of aldehydes other than formaldehyde was also investigated [18], Several examples of the present aldol reaction of silyl enol ethers with aldehydes are listed in Table 14-1. In every case, the aldol adducts were obtained in high yields in the presence of a catalytic amount of Yb(OTf)3, Gd(OTf)3, or Lu(OTf)3 in aqueous media. Diastereoselectivities were generally good to moderate. One feature in the present reaction is that water-soluble aldehydes, for instance, acetaldehyde, acrolein, and chloroacetaldehyde, can be reacted with silyl enol ethers to afford the corresponding cross aldol adducts in high yields (entries 5-7). Some of these aldehydes are commercially supplied as water solutions and are appropriate for direct use. Phenylglyoxal monohydrate also worked well (entry 8). It is known that water often interferes with the aldol reactions of aldehydes with metal enolates and that, in the cases where such water... [Pg.541]

Lewis acid-catalyzed asymmetric aldol reactions of silyl enol ethers with aldehydes are among the most powerful carbon-carbon bond-forming methods aprotic anhydrous solvents and low reaction temperatures are, however, usually needed for successful reaction. To perform the catalytic asymmetric aldol reaction in aqueous media a chiral crown ether-Pb(OTf)2 complex was employed as a chiral catalyst stable in water-ethanol [9]. Good to high yields and high levels of diastereo-and enantioselectivity were obtained at 0°C in aqueous media (Scheme 13.64). [Pg.745]

Other important aldol condensations are the Mukaiyama-type aldol reactions of silyl enol ethers with aldehydes that usually require catalyst activation. Yamamoto reported that such reactions under high pressure proceed (i) without catalyst even at room temperature, (ii) without isomerization of the formed adducts and (iii) with a reversed synlanti stereoselectivity compared with that of the TiCU-catalysed reactions. ... [Pg.262]

The demand for environmentally friendly chemistry and its widespread applicability have made water an increasingly popnlar solvent for organic transformations. Mixtures of water and other solvents snch as tetrahydrofnran are now commonly anployed for a number of organic transformations. For instance, the Lewis acid catalysed aldol reaction of silyl enol ethers, commonly known as the Mnkaiyama aldol reaction, which was firstly reported in the early seventies, can be carried ont in snch media. With titanium tetrachloride as the catalyst this reaction proceeds regioselectively in high yields, but the reaction has to be carried ont strictly nnder non-aqneons conditions in order to prevent decomposition of the catalyst and hydrolysis of the sUyl enol ethCTS. In the absence of the catalyst it was observed that water had a beneficial influence on this process (Table 4, entry D) . Nevertheless, the yields in the nncatalysed version WCTe still unsatisfactory. Improved results were obtained with water-tolerant Lewis acids. The first reported example for Lewis acid catalysis in aqueous media is the hydroxymethylation of silyl enol ethers with commercial formaldehyde solution using lanthanide trillates. In the meantime, the influence of several lanthanide triflates in cross-aldol reactions of various aldehydes was examined " " ". The reactions were most effectively carried out in 1 9 mixtures of water and tetrahydrofnran with 5-10% Yb(OTf)3, which can be reused after completion of the reaction (Table 19, entry A). Although the realization of this reaction is quite simple, the choice of the solvent is crucial (Table 20). [Pg.1071]

The aldol reactions of silyl enol ethers with aldehydes also proceed smoothly in water/ethanol/toluene [17]. The reactions proceed much faster in this solvent than in water/THF (Eq. 2). Furthermore, the new solvent system involves continuous use of the catalyst by a very simple procedure. Although the water/ethanol/toluene (1 7 4) system is one phase, it easily becomes two phases by adding toluene after the reaction is completed. The product is isolated from the organic layer by a usual work-up. On the other hand, the catalyst remains in the aqueous layer, which is used directly in the next reaction without removing water. It is noteworthy that the yields of the second, third, and fourth runs are comparable with that of the first run. [Pg.90]

Lubineau reported the water-promoted aldol reactions of silyl enol ethers with aldehydes, but the yields and the substrate scope were not yet satisfactory ... [Pg.98]

The pinwheel shape of a f-butyl propionate derived silylketene acetal (see Section 2.4.2.1) was revealed by a single-crystal X-ray diffraction analysis. Several different catalysts were reported to promote the aldol-type condensation of alkyl enol ethersand silyl enol ethers with aldehydes, acetals and various other electrophiles. In some cases the reaction proceeded with high simple stereoselection. The mechanism of the Lewis acid mediated additions to acetals (see Section 2.4.2.3) was investigated in detail, as well as the uncatalyzed aldol reaction of silyl enol ethers with aldehydes promoted by the hydrophobic effect (see Section 2.4.2.1). [Pg.655]

The aldol reactions of silyl enol ethers with aldehydes were also found to proceed smoothly in water-ethanol-toluene [20]. Some reactions proceeded much faster in this solvent system than in THF-water. Furthermore, the new solvent system realized continuous use of the catalyst by a very simple procedure. [Pg.253]

Several examples of the present aldol reactions of silyl enol ethers with aldehydes in water-ethanol-toluene are listed in Table 6.3-Pyridinecarboxaldehyde as well as 2-pyridinecarboxaldehyde, salicylaldehyde, and formaldehyde water... [Pg.255]

There has been a quite limited number of reports of clay-catalysed aldol condensations. One of the more interesting of these is the aluminium-exchanged montmorillonite (Al3+-mont) catalysed cross-aldol reaction of silyl enol ethers with aldehydes (Reaction 6).34 The reaction proceeded smoothly under mild conditions to give the corresponding aldol adduct in good yield. [Pg.48]

Asymmetric aldol reaction of silyl enol ethers. (16,221-222). The use of TiCI4 as promoter of aldol condensation of silyl enol ethers with aldehydes, first reported in 1973 (6,590-591), has seen wide use, but has the drawbacks that 1 cquiv. of the Lewis acid is required and that an asymmetric version requires use of chiral aldehydes or chiral silyl enol ethers. More recently, the combination of a salt and a weak Lewis acid, neither effective catalysts themselves, was found to be effective in catalytic (5-10 mol %) amounts. Further research showed that tin(ll) triflatc when coordinated with a chiral diamine can effect catalytic asymmetric allylation of aldehydes (13,302) and Michael reactions (15,313-314), even though this complex cannot promote aldol condensation. Eventually the combination of tin(Il) triflatc, a chiral diamine,... [Pg.341]


See other pages where Aldol reactions aldehydes/silyl enol ethers is mentioned: [Pg.273]    [Pg.1071]    [Pg.504]    [Pg.315]    [Pg.111]    [Pg.867]    [Pg.85]    [Pg.581]    [Pg.327]    [Pg.327]    [Pg.8]    [Pg.263]    [Pg.539]    [Pg.540]    [Pg.1071]    [Pg.941]    [Pg.89]    [Pg.250]    [Pg.250]    [Pg.253]    [Pg.317]    [Pg.317]   


SEARCH



Aldehyde enolate

Aldehyde enols

Aldehydes aldol reactions

Aldehydes aldol reactions with silyl enol ethers

Aldehydes aldol reactions, silyl enol ethers, scandium

Aldehydes enolates

Aldehydes enolization

Aldol reaction enol ethers

Aldol reaction silyl enol ether

Enolates aldol reactions

Enolates silylation

Enolates, silyl reactions

Enols aldol reactions

Ether aldehydes

Silyl aldol reaction

Silyl enol ethers

Silyl enol ethers aldehyde

Silyl enol ethers reaction

Silyl enolate

Silyl enolates

Silyl ethers reactions

Silylated aldol reactions

Silylated aldols

Silylation reactions

Silylative aldehyde

© 2024 chempedia.info