Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes, addition derivatives rates

The active aldehydes are derived from the reaction of 3-benzylthiazolium salts with o-tolualdehyde in the presence of DBU (l,8-diazabicyclo[5.4.0]undec-7-ene) via deprotonation of thiazolium salts, addition of the aldehyde and deprotonation of the adduct as shown in Scheme 33 [364], The anionic form of active aldehydes in Scheme 33 is confirmed by the direct detection of the one-electron oxidized species with use of ESR [364]. From the linewidth variations of the ESR spectra of the oxidized active aldehyde radicals were determined the rate constants [(5-7) x 10 s ] and the corresponding small reorganization energies (A = 12-13... [Pg.2429]

Readily available chiral amines related to the Betti base [phenyl(2-hydroxy-l-naphthyl)methanamine] catalyse enantioselective addition of diethylzinc to aldehydes in moderate to excellent ee Observed enantioselectivities in addition of diethylzinc to aldehydes catalysed by a series of (5)-proline-derived pyrrolidines have been explained in terms of steric effects. New 2,5-diazabicyclo[2.2.1]heptanes have been applied to enantioselective addition of diethylzinc to benzaldehyde. (S)-2-(3-Methyl-2-pyridyl)-3,5-di-r-butylphenol (76) has been used as an enantioselective catalyst of diethylzinc addition to benzaldehydes. Reaction in toluene shows a significant variation in % ee with temperature, including observation of an inversion temperature with maximum ee. This value varies with the nature of the para-substituent in the aldehyde, and the overall behaviour may be due to a shift in the rate-determining step of the reaction. Other reports of zinc reagents include enantioselective addition of diethylzinc to aldehydes addition of diphenylzinc to aldehydes using a chiral ferrocene-based hydroxyoxazoline catalyst in up to 96% ee and 3-exo-morpholinoisoborneol has been proposed as a more convenient and efficient enantioselective catalyst of alkylzincs than Noyori s original 3-exo-dimethylamino catalyst. ... [Pg.28]

Carboxylic acid derivatives, CH3C(=0)Z, are similar to aldehydes and ketones in that they contain a polar carbonyl group. Therefore, nucleophiles should add to the carbonyl carbon, although the rate of addition may depend on the Z group. [Pg.149]

The synthetic method leading to Nb-alkylidenes and Nb-alkylidynes was particularly successful, due to a quite remarkable difference in the reaction rate of 29 with ketones or aldehydes, vs the subsequent reaction of the alkylidene with ketones and aldehydes (see Scheme 37). The former reaction takes a few minutes at -40°C, while the latter one occurs in hours at room temperature.88 The reaction between 178 and benzaldehyde led to triphenylethylene and the niobyl derivative 184. Due to the difference in reaction rates between a and b in Scheme 37, it was found that the sequential addition of two different ketones or aldehydes to a THF solution of 29 produced a nonsymmetric olefin in a stepwise McMurry-type reaction.84 This is exemplified in the coupling shown in reaction c (Scheme 37). The proposed reaction pathway does not involve the intermediacy of a pinacolato ligand and therefore differs from the mechanism of the McMurry reaction and related reductive couplings at activated metal sites.89... [Pg.223]

The copolymer composition equation was first applied to co-oxidations in mixtures of aldehydes (25, 39) and later to numerous pairs of hydrocarbons and their derivatives (1, 2, 3, 4, 8, 27, 31, 32, 33). For oxidations of mixtures of A and B, attack by a peroxy radical first gives (by addition or hydrogen abstraction) A and B radicals in the presence of sufficient oxygen all these are then converted to A02 and B02 peroxy radicals. From the relative rates of reaction, A[A]/A[B], of A and B at two or more average feeds [A] / [B], in long kinetic chains, the copolymer composition equation... [Pg.51]

Analogous to the use of chiral acetals one can employ chiral N,O-acetals, accessible from a, -unsatu-rated aldehydes and certain chiral amino alcohols, to prepare optically active -substituted aldehydes via subsequent Sn2 addition and hydrolysis. However, the situation is more complicated in this case, since the N,0-acetal center constitutes a new stereogenic center which has to be selectively established. The addition of organocopper compounds to a, -ethylenic oxazolidine derivatives prepared from unsaturated aldehydes and ephedrine was studied.70-78 The (diastereo) selectivities were rather low (<50% ee after hydrolysis) in most cases, the highest value being 80% ee in a single case.73 There is a strong solvent effect in these reactions, e.g. in the addition of lithium dimethylcuprate to the ( )-cinnamaldehyde-derived oxazolidine (70 Scheme 28) 73 the (fl)-aldehyde (71) is formed preferentially in polar solvents, while the (S)-enantiomer [ent-71) is the major product in nonpolar solvents like hexane. This approach was utilized in the preparation of citronellal (80% ee) from crotonaldehyde (40% overall yield).78... [Pg.210]

Mukaiyama-Michael addition of a chiral ketene acetal to nonprochiral vinyl ketones gives products of 72-75% ee.145 A chirally modified glycine derivative (Schiff-base) adds to vinylic phosphorus compounds to yield, after hydrolysis, products with 54-85% ee.146 Another chiral glycine equivalent was used for the preparation of homochiral proline derivatives via diastereoselective addition to a,3-unsatu-rated aldehydes and ketones.147-148... [Pg.218]

The formation of rings with more than seven atoms has unfavorable rates because the addition step is often too slow to allow it to compete successfully with other pathways open to the radical intermediate. In stannane based chemistry for example, premature hydrogen abstraction from the organotin hydride is difficult to avoid. However, Baylis-Hillman adducts 111 derived from enantiopure 1-alkenyl (or alkynyl)-4-azetidinone-2-carbaldehydes are used for the stereoselective and divergent preparation of highly functionalized bicycles 112 and 113 fused to medium-sized heterocycles (Scheme 38) [80, 81]. The Baylis-Hillman reaction using nonracemic protected a-amino aldehydes has been attempted with limited success due to partial racemization of the chiral aldehyde by DABCO after... [Pg.24]

Several reaction conditions, e.g. the solvent and the rate of mixing, have a significant effect on the reaction [84]. Under optimized conditions the reaction is performed with an amount of catalyst of only 2 mol% (S,S)-52 in the presence of di-chloromethane as solvent. A further prerequisite for efficient reaction is, however, dropwise addition of the aldehyde component. For example, a yield of 91%, high anti/syn diastereoselectivity of 28 1, and 92% ee for the anti product anti-53 was obtained under such conditions when using benzaldehyde and the trichlorosilyl ether derived from cyclohexenone as substrates. On rapid addition of the aldehyde, however, 10 mol% catalyst was required for comparable selectivity. [Pg.155]

The corresponding /i-amino aldehydes are reduced in situ and the corresponding amino alcohols are isolated in good yield with up to >99 % ee. The Mannich reactions proceed with excellent chemoselectivity and inline formation occurs with the acceptor aldehyde at a faster rate than C-C bond-formation. Moreover, the one-pot three-component direct asymmetric cross-Mannich reaction enables aliphatic aldehydes to serve as acceptors. The absolute stereochemistry of the reaction was determined by synthesis and reveled that L-proline provides syn /i-amino aldehydes with (S) stereochemistry of the amino group. In addition, the proline-catalyzed direct asymmetric Mannich-type reaction has been connected to one-pot tandem cyanation and allylation reaction in THF and aqueous media affording functional a-amino acid derivatives [39, 42]. [Pg.369]

Disilenes react with ketones, aldehydes, esters and acid chlorides by formal [2 + 21-cycloaddition to yield the corresponding disiloxetanes (equation 73)8,16. The reaction is non-concerted and proceeds through the initial formation of a 1,4-biradical intermediate, as has been shown by the products of reaction of tetramesityldisilene (110) with the cyclopropyl aldehyde 117 (equation 90)163. The absolute rate constants listed in Table 19 indicate there to be a significant difference in reactivity between the monophenyl-substituted disilene 103 and the 1,2-diphenyl-substituted derivatives 104, consistent with a steric effect on the rate of formation of the biradical intermediate. As would be expected, no kinetic deuterium isotope effect is discernible from the relative rates of addition of acetone and acetone- to these compounds. [Pg.1020]

The Homer-Emmons addition of dialkyl alkoxycarbonylmethylenephosphonates to aldehydes has been widely used to generate a,3-unsaturated esters which, in turn, can be reduced to allylic alcohols. Under the original conditions of the Homer-Emmons reaction, the stereochemistry of the a, 3-unsatu-rated ester is predominantly trans, and therefore the tranr-allylic alcohol is obtained upon reduction. Still and Gennari have introduced an important modification of the Homer-Emmons reaction which shifts the stereochemistry of the a,3-unsaturated ester to predominantly cis. Diisobutylaluminum hydride (DIBAL) has frequently bem used for the reduction of the alkoxycarbonyl group to the primary alcohol functionality. The aldehyde needed for reaction with the Homer-Emmons reagent may be derived via Swem oxidation of a primary alcohol. The net result is that one frequently sees the reaction sequence shown in equation (1) used for the preparation of (3 )- and (3Z)-allylic alcohols. [Pg.396]


See other pages where Aldehydes, addition derivatives rates is mentioned: [Pg.330]    [Pg.195]    [Pg.195]    [Pg.547]    [Pg.195]    [Pg.289]    [Pg.320]    [Pg.178]    [Pg.522]    [Pg.53]    [Pg.290]    [Pg.203]    [Pg.52]    [Pg.182]    [Pg.452]    [Pg.705]    [Pg.136]    [Pg.296]    [Pg.1040]    [Pg.177]    [Pg.227]    [Pg.91]    [Pg.178]    [Pg.300]    [Pg.448]    [Pg.231]    [Pg.167]    [Pg.15]    [Pg.179]    [Pg.272]    [Pg.59]    [Pg.118]    [Pg.1214]    [Pg.4104]    [Pg.382]    [Pg.38]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Addition aldehydes

Addition derivatives

Addition rate

Aldehydes deriv

Aldehydes derivatives

Rate Derivation

© 2024 chempedia.info