Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde nitrates

Reaction products such as aldehydes, nitrates, PAN, etc., are formed. [Pg.412]

Chemicals that are released into the environment outside the worksite may cause health hazards to the general public. The released chemicals may react with the ambient oxygen and ozone in the presence of sunlight to form other chemicals such as acids, aldehydes, nitrates and other irritant and/or noxious chemicals. [Pg.401]

On the other hand, when aromatic aldehydes are treated with nitric acid at low temperatures, addition compounds (the so-called aldehyde nitrates) can be isolated, which pass into ring-nitrated aldehydes when brought into sulfuric acid.197... [Pg.423]

Note cautiously the characteristic odour of acetaldehyde which this solution possesses. Then with the solution carry out the following general tests for aldehydes described on p. 341 Test No. I (SchiflF s reagent). No. 3 (Action of sodium hydroxide). No. 4 (Reduction of ammoniacal silver nitrate). Finally perform the two special tests for acetaldehyde given on p. 344 (Nitroprusside test and the Iodoform reaction). [Pg.75]

Formation of silver mirror or precipitate of silver indicates reducing agent. (This is often a more sensitive test than I (a) above, and some compounds reduce ammoniacal silver nitrate but are without effect on Fehling s solution.) Given by aldehydes and chloral hydrate formates, lactates and tartrates reducing sugars benzoquinone many amines uric acid. [Pg.408]

Aromatic aldehydes react with the dimedone reagent (Section 111,70,2). All aromatic aldehydes (i) reduce ammoniacal silver nitrate solution and (ii) restore the colour of SchifiF s reagent many react with sodium bisulphite solution. They do not, in general, reduce Fehling s solution or Benedict s solution. Unlike aliphatic aldehydes, they usually undergo the Cannizzaro reaction (see Section IV,123) under the influence of sodium hydroxide solution. For full experimental details of the above tests, see under Ali-phalic Aldehydes, Section 111,70. They are easily oxidised by dilute alkaline permanganate solution at the ordinary temperature after removal of the manganese dioxide by sulphur dioxide or by sodium bisulphite, the acid can be obtained by acidification of the solution. [Pg.721]

The behavior of aromatic aldehydes is typical Nitration of benzaldehyde takes place sev eral thousand times more slowly than that of benzene and yields m mtrobenzaldehyde as the major product... [Pg.498]

Nitration and halogenation of furfural occurs under carehiUy controlled conditions with introduction of the substituent at the open 5-position (24,25). Nitration of furfural is usually carried out in the presence of acetic anhydride, resulting in the stable compound, 5-nitrofurfuryhdene diacetate (26,27). The free aldehyde is isolated by hydrolysis and must be used immediately in a reaction because it is not very stable. [Pg.77]

The hydroxyl groups on glycols undergo the usual alcohol chemistry giving a wide variety of possible derivatives. Hydroxyls can be converted to aldehydes, alkyl hahdes, amides, amines, a2ides, carboxyUc acids, ethers, mercaptans, nitrate esters, nitriles, nitrite esters, organic esters, peroxides, phosphate esters, and sulfate esters (6,7). [Pg.357]

Molybdenum. Molybdenum is a component of the metaHoen2ymes xanthine oxidase, aldehyde oxidase, and sulfite oxidase in mammals (130). Two other molybdenum metaHoen2ymes present in nitrifying bacteria have been characteri2ed nitrogenase and nitrate reductase (131). The molybdenum in the oxidases, is involved in redox reactions. The heme iron in sulfite oxidase also is involved in electron transfer (132). [Pg.387]

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

These precursors are prepared by reaction of fuming nitric acid in excess acetic anhydride at low temperatures with 2-furancarboxaldehyde [98-01-1] (furfural) or its diacetate (16) followed by treatment of an intermediate 2-acetoxy-2,5-dihydrofuran [63848-92-0] with pyridine (17). This process has been improved by the use of concentrated nitric acid (18,19), as well as catalytic amounts of phosphoms pentoxide, trichloride, and oxychloride (20), and sulfuric acid (21). Orthophosphoric acid, -toluenesulfonic acid, arsenic acid, boric acid, and stibonic acid, among others are useful additives for the nitration of furfural with acetyl nitrate. Hydrolysis of 5-nitro-2-furancarboxyaldehyde diacetate [92-55-7] with aqueous mineral acids provides the aldehyde which is suitable for use without additional purification. [Pg.460]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

Pyridazine aldehydes and ketones with the carbonyl group at the ring or in a side chain react in the usual manner. They form hydrazones, semicarbazides, oximes, etc. Side-chain aldehydes can be easily oxidized to pyridazinecarboxylic acids with silver nitrate and side-chain ketones are oxidized to carboxylic acids by treatment with potassium permanganate or hydrogen peroxide. [Pg.32]

Ester, aldehyde, carbonate, phosphate, nitrate, nitrite, nitrile, intramolecular bonding, e.g., o-nitrophenol - 0 -1- - -1- -1- 0 -1- -1- 0 -1- -1-... [Pg.1453]


See other pages where Aldehyde nitrates is mentioned: [Pg.2010]    [Pg.2010]    [Pg.19]    [Pg.145]    [Pg.330]    [Pg.1061]    [Pg.53]    [Pg.242]    [Pg.369]    [Pg.473]    [Pg.35]    [Pg.503]    [Pg.497]    [Pg.504]    [Pg.61]    [Pg.125]    [Pg.126]    [Pg.87]    [Pg.155]    [Pg.156]    [Pg.251]    [Pg.632]    [Pg.823]    [Pg.902]    [Pg.1453]    [Pg.311]    [Pg.108]    [Pg.169]    [Pg.746]    [Pg.746]    [Pg.67]    [Pg.196]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Aldehyde cellulose nitrates

Aldehydes cerium ammonium nitrate

Aldehydes nitrate radical reactions

Silver nitrate formation of aldehydes

© 2024 chempedia.info