Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcoholate, aluminium

Industrially, chlorine is obtained as a by-product in the electrolytic conversion of salt to sodium hydroxide. Hazardous reactions have occuned between chlorine and a variety of chemicals including acetylene, alcohols, aluminium, ammonia, benzene, carbon disulphide, diethyl ether, diethyl zinc, fluorine, hydrocarbons, hydrogen, ferric chloride, metal hydrides, non-metals such as boron and phosphorus, rubber, and steel. [Pg.280]

The secondary alcohols are oxidized to ketones by refluxing with aluminium isopropoxide, A1[0CH(CH3)2]3 [or Al(0-iPr)3], or potassium t-butoxide, KOC(CH3)3 [or KO-t-Bu]. A ketone such as acetone used in the reaction as refluxing agent is reduced to alcohol, 2-propanol. The reaction is known as the Oppenauer oxidation. The reverse reaction known as the Meerwein-Ponndorf-Verly reduction is the reduction of ketones to alcohols in the presence of alcohol such as 2-propanol. Potassium fert-butoxide can be used for the oxidation of primary alcohols. Aluminium isopropoxide in acetone is particularly used for... [Pg.281]

The thin film prepared had the composition of(100 — x)Zn0 -Al203, where x — 0-7. Zinc acetate, which was used as the zinc source, was very soluble in water and alcohol. Aluminium nitrate was used as the aluminium somce (Nishio, 1996b). Zinc acetate and aluminium nitrate were mixed to obtain the desired composition and dissolved in ethanol. Then diethylentriamine, diethanolamine, monoethanolamine and acetylacetone (Fig. 3-6) were added to prepare coating solutions called solution A, B, C and D, respectively. [Pg.65]

Benzene CeHg has no action on aluminium, even as a mixture with alcohol. Aluminium equipment is used for the distillation (boiling point 80 °C), storage and transportation of benzene and its derivatives, such as toluene C6H5CH3, xylene C6H4(CH3)2, ethylbenzene C6H5C2H5, styrene C6H5C2H3 [4]. [Pg.450]

A pletliora of different SA systems have been reported in tire literature. Examples include organosilanes on hydroxylated surfaces, alkanetliiols on gold, silver, copper and platinum, dialkyl disulphides on gold, alcohols and amines on platinum and carboxyl acids on aluminium oxide and silver. Some examples and references can be found in [123]. More recently also phosphonic and phosphoric esters on aluminium oxides have been reported [124, 125]. Only a small selection out of tliis number of SA systems can be presented here and properties such as kinetics, tliennal, chemical and mechanical stability are briefly presented for alkanetliiols on gold as an example. [Pg.2622]

Lithium aluminium hydride, LiAlH, is a very active reducing agent, and is used particularly for the ready reduction of carboxylic acids (or their esters) to primary alcohols R-COOH -> R CH,OH. [Pg.155]

In the following experiment, salicylic acid is reduced to o-hydroxybenzyl alcohol (or saligenin), which being crystalline is readily isolated the excess of hydride is destroyed by the addition of undried ether, and the aluminium hydroxide then brought into solution by the addition of sulphuric acid. [Pg.155]

It is interesting to note that under the influence of aluminium alkoxides (in alcohol or, better, in benzene solution) aldehydes produce the ester (Tischenko reaction) ... [Pg.318]

Trimethylene dibromide (Section 111,35) is easily prepared from commercial trimethj lene glycol, whilst hexamethylene dibromide (1 O dibromohexane) is obtained by the red P - Br reaction upon the glycol 1 6-hexanediol is prepared by the reduction of diethyl adipate (sodium and alcohol lithium aluminium hydride or copper-chromium oxide and hydrogen under pressure). Penta-methylene dibromide (1 5-dibromopentane) is readily produced by the red P-Brj method from the commercially available 1 5 pentanediol or tetra-hydropyran (Section 111,37). Pentamethylene dibromide is also formed by the action of phosphorus pentabromide upon benzoyl piperidine (I) (from benzoyl chloride and piperidine) ... [Pg.489]

The aluminium amalgam is prepared as described in Section 11,50,72. After washing with water, it slioidd lir.st be washed with methyl alcohol and Anally with a little dry benzene. [Pg.514]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Potassium and sodium borohydride show greater selectivity in action than lithium aluminium hydride thus ketones or aldehydes may be reduced to alcohols whilst the cyano, nitro, amido and carbalkoxy groups remain unaffected. Furthermore, the reagent may be used in aqueous or aqueous-alcoholic solution. One simple application of its use will be described, viz., the reduction of m-nitrobenzaldehyde to m-nitrobenzyl alcohol ... [Pg.881]

Aldehydes and ketones can be reduced smoothly to the corresponding alcohols by aluminium alkoxides. The most satisfactory alkoxlde for general use Is aluminium tsopropoxide ... [Pg.882]

The reagent is conveniently stored as a solution in isopropyl alcohol. The molten (or solid) alkoxide is weighed out after distillation into a glass-stoppered bottle or flask and is dissolved in sufficient dry isopropyl alcohol to give a one molar solution. This solution may be kept without appreciable deterioration provided the glass stopper is sealed with paraffin wax or cellophane tape. Crystals of aluminium isopropoxide separate on standing, but these may be redissolved by warming the mixture to 65-70°. [Pg.883]

Prepare a solution of aluminium isopropoxide from 23 -5 g. of aluminium, 0-5 g. of mercuric chloride and 250 ml. of dry isopropyl alcohol ... [Pg.883]

Place 35 ml. of a M solution of aluminium tsopropoxide or 7 g. of solid aluminium tsopropoxide, 450 ml. of dry isopropyl alcohol and 21 g. of purified benzaldehyde (Section IV,115) in a 1 litre round-bottomed flask. Fit a short reflux condenser (no water in the cooling jacket) or better a Hahn condenser (2) (containing a 1 cm. layer of ethyl alcohol in the iimer tube) to the flask and arrange for slow distillation from a water bath at the rate of 3-6 drops per minute. Continue the heating until a negative test for acetone is obtained after 5 minutes of total reflux (6-9 hours) if the volume of the mixture falls below 200 ml. during the reduction, add more isopropyl alcohol. Remove the reflux or Hahn condenser and distil off (Fig. II, 13, 3) most of the isopropyl alcohol under atmospheric pressure from a suitable oil bath. Hydrolyse the... [Pg.884]

Secondary alcohols may be oxidised to the corresponding ketones with aluminium ferf.-butoxlde (or tsopropoxlde) In the presence of a large excess of acetone. This reaction Is known as the Oppenauer oxidation and Is the reverse of the Meerweln - Ponndorf - Verley reduction (previous Section) it may bo expressed ... [Pg.886]

Acetone in conjunction with benzene as a solvent is widely employed. With cyclohexanone as the hydrogen acceptor, coupled with toluene or xylene as solvent, the use of higher reaction temperatures is possible and consequently the reaction time is considerably reduced furthermore, the excess of cyclohexanone can be easily separated from the reaction product by steam distillation. At least 0 25 mol of alkoxide per mol of alcohol is used however, since an excess of alkoxide has no detrimental effect 1 to 3 mols of aluminium alkoxide is recommended, particularly as water, either present in the reagents or formed during secondary reactions, will remove an equivalent quantity of the reagent. In the oxidation of steroids 50-200 mols of acetone or 10-20 mols of cyclohexanone are generally employed. [Pg.886]

The following mechanism appears reasonable (compare Section VI, 12), It assumes that the function of the aluminium ieri.-butoxide, or other alkoxide. is to provide a source of aluminium ions and that the aluminium salt of the secondary alcohol is the actual reactant. Aluminium with its sextet of electrons has a pronounced tendency to accept a pair of electrons, thus facilitating the initial coordination and the subsequent transfer of a hydride ion ... [Pg.887]

Thiazole acids may undergo many different types of reduction. Chemical reduction of thiazolecarboxy lic acids and of their derivatives to yield the corresponding alcohols can be accomplished with lithium aluminium hydride in ether solution (53). [Pg.524]

Reduction with sodium in alcohol was unsuccessful (54). The introduction of lithium aluminium hydride has provided an elegant method for the reduction of thiazole esters to hydroxythiazoles for example, ethyl 2-methyl-4-thiazolecarboxylate (11 with lithium aluminium hydride in diethyl ether gives 2-methyl-4-(hydroxymethyl)thiazole (12) in 66 to 69% yield (Scheme 7) (53),... [Pg.524]

The reduction of thiazole carboxaldehydes with isopropanol and aluminium isopropoxide gives the corresponding alcohols (37, 107, 108). [Pg.535]

Reduction with aluminium isopropoxide by the Meerwein-Pondorf procedure yields the alcohol (56, 57, 112). [Pg.537]


See other pages where Alcoholate, aluminium is mentioned: [Pg.268]    [Pg.268]    [Pg.18]    [Pg.19]    [Pg.21]    [Pg.24]    [Pg.25]    [Pg.126]    [Pg.163]    [Pg.164]    [Pg.287]    [Pg.142]    [Pg.676]    [Pg.870]    [Pg.871]    [Pg.880]    [Pg.882]    [Pg.883]    [Pg.885]    [Pg.887]    [Pg.16]    [Pg.527]    [Pg.188]    [Pg.512]    [Pg.275]    [Pg.75]   
See also in sourсe #XX -- [ Pg.7 , Pg.89 ]

See also in sourсe #XX -- [ Pg.7 , Pg.89 ]




SEARCH



Alcoholate, aluminium sodium

Alcohols aluminium hydride

Lithium aluminium hydride alcohols

The Action of Boiling Alcohols and Dehydrated Phenols on Aluminium

© 2024 chempedia.info