Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols chemical properties

Chemical Properties. Without inhibitors, tetrahydrofurfuryl alcohol is susceptible to autoxidation, developing color and carbonyl functionality. In the absence of air, however, no observable changes occur even after several years storage. In the presence of air, if a stabilizer such as Naugard is added, tetrahydrofurfuryl alcohol remains colorless after protracted periods of storage. Peroxide accumulation is low, not dangerous, and readily dischargeable on redistillation. [Pg.82]

The physical and chemical properties are less well known for transition metals than for the alkaU metal fluoroborates (Table 4). Most transition-metal fluoroborates are strongly hydrated coordination compounds and are difficult to dry without decomposition. Decomposition frequently occurs during the concentration of solutions for crysta11i2ation. The stabiUty of the metal fluorides accentuates this problem. Loss of HF because of hydrolysis makes the reaction proceed even more rapidly. Even with low temperature vacuum drying to partially solve the decomposition, the dry salt readily absorbs water. The crystalline soflds are generally soluble in water, alcohols, and ketones but only poorly soluble in hydrocarbons and halocarbons. [Pg.167]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Chemical Properties. Its two functional groups permit a wide variety of chemical reactions for lactic acid. The primary classes of these reactions are oxidation, reduction, condensation, and substitution at the alcohol group. [Pg.512]

The nature of the alkyl group from the esterifying alcohol, the molecular weight, and the tacticity determine the physical and chemical properties of methacrylate ester polymers. [Pg.259]

Chemical Properties. Alkyl peroxyesters are hydroly2ed more readily than the analogous nonperoxidic esters and yield the original acids and hydroperoxides from which they were prepared rather than alcohols and peroxyacids ... [Pg.129]

Physical and chemical properties of isopropyl alcohol reflect its secondary hydroxyl functionaHty. For example, its boiling and flash poiats are lower than / -propyl alcohol [71-25-8], whereas its vapor pressure and freezing poiat are significantly higher. Isopropyl alcohol bods only 4°C higher than ethyl alcohol. [Pg.104]

Chemical properties of isopropyl alcohol are determined by its functional hydroxyl group in the secondary position. Except for the production of acetone, most isopropyl alcohol chemistry involves the introduction of the isopropyl or isopropoxy group into other organic molecules by the breaking of the C—OH or the O—H bond in the isopropyl alcohol molecule. [Pg.105]

A number of physical and chemical properties of 1-propanol are Hsted ia Table 1 (2,3). The chemistry of 1-propanol is typical of low molecular weight primary alcohols (see Alcohols, higher aliphatic). Biologically, 1-propanol is easily degraded by activated sludge and is the easiest alcohol to degrade (4). [Pg.117]

Physical and Chemical Properties. Sodium thiocyanate [540-72-7] NaSCN, is a colorless dehquescent crystalline soHd (mp 323°C). It is soluble in water to the extent of 58 wt % NaSCN at 25°C and 69 wt % at 100°C. It is also highly soluble in methanol and ethanol, and moderately soluble in acetone. Potassium thiocyanate [333-20-0] KSCN, is also a colorless crystalline soHd (mp 172°C) and is soluble in water to the extent of 217 g/100 g of water at 20°C and in acetone and alcohols. Much of the chemistry of sodium and potassium thiocyanates is that of the thiocyanate anion (372—375). [Pg.152]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

Functional polyethylene waxes provide both the physical properties obtained by the high molecular weight polyethylene wax and the chemical properties of an oxidised product, or one derived from a fatty alcohol or acid. The functional groups improve adhesion to polar substrates, compatibHity with polar materials, and dispersibHity into water. Uses include additives for inks and coatings, pigment dispersions, plastics, cosmetics, toners, and adhesives. [Pg.317]

Chemical Properties. Like neopentanoic acid, neodecanoic acid, C2QH2QO2, undergoes reactions typical of carboxyHc acids. For example, neodecanoic acid is used to prepare acid chlorides, amides (76), and esters (7,11,77,78), and, like neopentanoic acid, is reduced to give alcohols and alkanes (21,24). One area of reaction chemistry that is different from the acids is the preparation of metal salts. Both neopentanoic acid and neodecanoic acid, like all carboxyHc acids, can form metal salts. However, in commercial appHcations, metal salt formation is much more important for neodecanoic acid than it is for neopentanoic acid. [Pg.105]

Physical and Chemical Properties. Although both the (E)- and (Z) [4510-34-3] isomers of cinnamyl alcohol are known in nature, (E)-cinnamyl alcohol [4407-36-7] is the only isomer with commercial importance. Its properties are summari2ed in Table 4. [Pg.175]

The reactions of esters have been reviewed (11—15). Because of the large number of possible acid and alcohol moieties, the chemical properties of esters may differ considerably. Only typical reactions appHcable to the majority of esters are described in the following sections. [Pg.388]

Greater selectivity in purification can often be achieved by making use of differences in chemical properties between the substance to be purified and the contaminants. Unwanted metal ions may be removed by precipitation in the presence of a collector (see p. 54). Sodium borohydride and other metal hydrides transform organic peroxides and carbonyl-containing impurities such as aldehydes and ketones in alcohols and ethers. Many classes of organic chemicals can be purified by conversion into suitable derivatives, followed by regeneration. This chapter describes relevant procedures. [Pg.53]

FINCH, c.A. (Ed.), Polyvinyl alcohol Properties and Applications, Wiley New York (1973) PRITCHARD, J.G., Poly(Vinyl alcohol) Basic Properties and Uses, Macdonald, London (1970) Properties and Applications of Polyvinyl Alcohol (SCI Monograph No. 30), Society of the Chemical Industry, London (1968)... [Pg.397]

Aldehydes and Ketones — These share many chemical properties because they possess the carbonyl (C=0) group as a common feature of their structure. Aldehydes and ketones have lower boiling points and higher vapor pressures than their alcohol counterparts. Aldehydes and ketones through C< are soluble in water and have pronounced odors. Ketones are relatively inert while aldehydes are easily oxidized to their counterpart organic acids. [Pg.170]

Physical and Chemical Properties - Physical State at 15 °C and I atm. Liquid Molecular Weight 319 (solute only) Boiling Point at I atm. (isopropyl alcohol) 180, 82.3, 355.5 Freezing Point Not pertinent Critical Temperature Not pertinent Critical Pressure Not pertinent Specific Gravity (approx.) 0.9 at 25°C, (liquid) Vapor (Gas) Specific Gravity Not pertinent Ratio of Specific Heats of Vapor (Gas) Not pertinent Latent Heat of Vaporization Not pertinent Heat of Combustion Not pertinent Heat of Decomposition Not pertinent. [Pg.196]

Phenol has different chemical properties from those of typical alcohols. Display the electrostatic potential map for phenol. Does this suggest that phenol is likely to be a stronger or weaker acid than any of the compounds discussed above Compare the electrostatic potential map for 4-nitrophenol to that for phenol. What effect does substitution by nitro have on acid strength Explain your result by considering charge delocalization in the conjugate base. Draw all reasonable Lewis structures for phenoxide anion and for 4-nitrophenoxide anion. Which is more delocalized Is this consistent with experimental pKa s ... [Pg.122]

In 1899 Thoms isolated an alcohol from Peru balsam oil, which he termed peruviol. This body was stated to have powerful antiseptic properties, but has not been further investigated until Schimmel Co. took up the subject. The oil after saponification was fractionated, and after benzyl alcohol had distilled over, a light oil with characteristic balsamic odour passed over. It boiled at 125° to 127° at 4 mm., and had a specific gravity 0 8987, optical rotation -1- 12° 22, and refractive index 1-48982. This body appeared to be identical with Hesse s nerolidol, whilst in physical and chemical properties it closely resembles peruviol. The characters of the various preparations were as follows —... [Pg.125]

The direct reaction of 1-alkenes with strong sulfonating agents leads to surface-active anionic mixtures containing both alkenesulfonates and hydroxyalkane sulfonates as major products, together with small amounts of disulfonate components, unreacted material, and miscellaneous minor products (alkanes, branched or internal alkenes, secondary alcohols, sulfonate esters, and sultones). Collectively this final process mixture is called a-olefinsulfonate (AOS). The relative proportions of these components are known to be an important determinant of the physical and chemical properties of the surfactant [2]. [Pg.430]


See other pages where Alcohols chemical properties is mentioned: [Pg.20]    [Pg.330]    [Pg.2419]    [Pg.79]    [Pg.194]    [Pg.308]    [Pg.201]    [Pg.473]    [Pg.103]    [Pg.373]    [Pg.306]    [Pg.311]    [Pg.278]    [Pg.67]    [Pg.463]    [Pg.483]    [Pg.154]    [Pg.401]    [Pg.107]    [Pg.78]    [Pg.147]    [Pg.374]    [Pg.143]    [Pg.89]    [Pg.688]    [Pg.69]    [Pg.215]    [Pg.49]   


SEARCH



Alcohols characteristic chemical properties

Polyvinyl alcohol chemical properties

© 2024 chempedia.info