Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption weak acid

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

Structure Modification. Several types of stmctural defects or variants can occur which figure in adsorption and catalysis (/) surface defects due to termination of the crystal surface and hydrolysis of surface cations (2) stmctural defects due to imperfect stacking of the secondary units, which may result in blocked channels (J) ionic species, eg, OH , AIO 2, Na", SiO , may be left stranded in the stmcture during synthesis (4) the cation form, acting as the salt of a weak acid, hydrolyzes in aqueous suspension to produce free hydroxide and cations in solution and (5) hydroxyl groups in place of metal cations may be introduced by ammonium ion exchange, followed by thermal deammoniation. [Pg.447]

Effect on Oxide—Water Interfaces. The adsorption (qv) of ions at clay mineral and rock surfaces is an important step in natural and industrial processes. SiUcates are adsorbed on oxides to a far greater extent than would be predicted from their concentrations (66). This adsorption maximum at a given pH value is independent of ionic strength, and maximum adsorption occurs at a pH value near the piC of orthosiUcate. The pH values of maximum adsorption of weak acid anions and the piC values of their conjugate acids are correlated. This indicates that the presence of both the acid and its conjugate base is required for adsorption. The adsorption of sihcate species is far greater at lower pH than simple acid—base equihbria would predict. [Pg.7]

Adsorption of Metal Ions and Ligands. The sohd—solution interface is of greatest importance in regulating the concentration of aquatic solutes and pollutants. Suspended inorganic and organic particles and biomass, sediments, soils, and minerals, eg, in aquifers and infiltration systems, act as adsorbents. The reactions occurring at interfaces can be described with the help of surface-chemical theories (surface complex formation) (25). The adsorption of polar substances, eg, metal cations, M, anions. A, and weak acids, HA, on hydrous oxide, clay, or organically coated surfaces may be described in terms of surface-coordination reactions ... [Pg.218]

Lateral interactions between the adsorbed molecules can affect dramatically the strength of surface sites. Coadsorption of weak acids with basic test molecules reveal the effect of induced Bronsted acidity, when in the presence of SO, or NO, protonation of such bases as NH, pyridine or 2,6-dimethylpyridine occurs on silanol groups that never manifest any Bronsted acidity. This suggests explanation of promotive action of gaseous acids in the reactions catalyzed by Bronsted sites. Just the same, presence of adsorbed bases leads to the increase of surface basicity, which can be detected by adsorption of CHF. ... [Pg.431]

For the titration of chlorides, fluorescein may be used. This indicator is a very weak acid (Ka = ca lx 10-8) hence even a small amount of other acids reduces the already minute ionisation, thus rendering the detection of the end point (which depends essentially upon the adsorption of the free anion) either impossible or difficult to observe. The optimum pH range is between 7 and 10. Dichlorofluorescein is a stronger acid and may be utilised in slightly acid solutions of pH greater than 4.4 this indicator has the further advantage that it is applicable in more dilute solutions. [Pg.347]

Tetrabromophthalein ethyl ester potassium salt is a pH indicator that changa from blue to yellow in the pH range 4.2-3. It is known that proteins and alkaloids fordli blue-colored salt-like adsorption compounds with this indicator that are not destroyeti by weak acids [3]. Thiophosphate pesticides and triazines possibly form similar conhi pounds. [Pg.214]

Figures 11(a) and 11(b) [112] show the variation of Ni-Ge-P deposition rate and Ge content as a function of aspartic acid and Ge(IV) concentration, respectively. A relatively low P content, ca. 1-2 at%, was observed in the case of films exhibiting a high concentration of Ge (> 18 at%). Like other members of its class, which includes molybdate and tungstate, Ge(IY) behaves a soft base according to the hard and soft acids and bases theory (HSAB) originated by Pearson [113, 114], capable of strong adsorption, or displaying inhibitor-like behavior, on soft acid metal surfaces. In weakly acidic solution, uncomplexed Ge(IV) most probably exists as the hydrated oxide, or Ge(OH)4, which, due to acid-base reactions, may be more accurately represented as [Gc(OH)4 nO ] ". Figures 11(a) and 11(b) [112] show the variation of Ni-Ge-P deposition rate and Ge content as a function of aspartic acid and Ge(IV) concentration, respectively. A relatively low P content, ca. 1-2 at%, was observed in the case of films exhibiting a high concentration of Ge (> 18 at%). Like other members of its class, which includes molybdate and tungstate, Ge(IY) behaves a soft base according to the hard and soft acids and bases theory (HSAB) originated by Pearson [113, 114], capable of strong adsorption, or displaying inhibitor-like behavior, on soft acid metal surfaces. In weakly acidic solution, uncomplexed Ge(IV) most probably exists as the hydrated oxide, or Ge(OH)4, which, due to acid-base reactions, may be more accurately represented as [Gc(OH)4 nO ] ".
The adsorption of ligands (anions and weak acids) on metal oxide (and silicate) surfaces can also be compared with complex formation reactions in solution, e.g.,... [Pg.15]

Effects of Pentavalent Sb Ions on the Adsorption of Divalent Co-57 on Hematite. Benjamin and Bloom reported that arsenate ions enhance the adsorption of cobaltous ions on amorphous iron oxyhydroxide (J 6). Similarly, when divalent Co-57 ions were adsorbed on hematite together with pentavalent Sb ions, an increase of adsorption in the weakly acidic region was observed. For example, when 30 mg of hematite was shaken with 10 cm3 of 0.1 mol/dm3 KC1 solution at pH 5.5 containing carrier-free Co-57 and about 1 mg of pentavalent Sb ions, 95 % of Co-57 and about 30 % of Sb ions were adsorbed. The emission spectra of the divalent Co-57.ions adsorbed under these conditions are shown in Figure 8 together with the results obtained under different conditions. As seen in Figure 8, the spectra of divalent Co-57 co-adsorbed with pentavalent Sb ions are much different from those of Co-57 adsorbed alone (Figure 3). These observations show a marked effect of the.co-adsorbed pentavalent Sb ions on the chemical structure of adsorbed Co-57. [Pg.414]

Since the surface silanol groups react weakly acidic, neutralization with strong bases can be used for their direct determination. However, care must be taken that no dissolution of silica takes place. Greenberg (1ST) found that the adsorption of calcium hydroxide was roughly... [Pg.228]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]

The initial adsorption of the oxime in zeolites was studied through a combination of solid-state NMR spectroscopy and theoretical calculations ". The calculated adsorption complexes formed over silanol groups and complexes over Brpnsted acid sites in zeolites are depicted. This study suggests that the A-protonated oxime is formed over Brpnsted acid centers, but not over weakly acidic silanol groups. It has been also suggested that weakly acidic or neutral silanol groups or silanol nests are active catalysts of the rearrangement reaction ... [Pg.396]

The acid sites strength can be determined by measuring the heats of adsorption of basic probe molecules. The basic probes most commonly used are NH3 (pTTa = 9.24, proton affinity in gas-phase = 857.7 kJ/mol) and pyridine (pTTa = 5.19, proton affinity in gas-phase = 922.2 kJ/mol). The center of basicity of these probes is the electron lone pair on the nitrogen. When chemisorbed on a surface possessing acid properties, these probes can interact with acidic protons, electron acceptor sites, and hydrogen from neutral or weakly acidic hydroxyls. [Pg.224]


See other pages where Adsorption weak acid is mentioned: [Pg.399]    [Pg.383]    [Pg.384]    [Pg.44]    [Pg.221]    [Pg.347]    [Pg.56]    [Pg.132]    [Pg.350]    [Pg.246]    [Pg.108]    [Pg.93]    [Pg.222]    [Pg.144]    [Pg.281]    [Pg.32]    [Pg.52]    [Pg.52]    [Pg.259]    [Pg.256]    [Pg.40]    [Pg.192]    [Pg.411]    [Pg.431]    [Pg.100]    [Pg.296]    [Pg.7]    [Pg.100]    [Pg.238]    [Pg.263]    [Pg.54]    [Pg.292]    [Pg.229]    [Pg.232]    [Pg.232]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Acids adsorption

Weak acids

Weakly acidic

© 2024 chempedia.info