Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption acetonitrile

Eigure 13.57 discusses in some detail the use of mobile-phase modifiers to prevent adsorption on PDVB resins. These concepts are very valuable in developing methods. Eor example, note how the observed column efficiencies improve for paraben analysis in the order of methanol < acetonitrile < 50/50 methanol/acetonitrile < THE. Eurthermore, when THE is used the chromato-... [Pg.385]

Angell (1) has investigated the Raman spectra of acetonitrile, propylene, and acrolein on a number of zeolites and found that physical adsorption occurred. There are sufficient differences between the spectrum of the liquid and of the adsorbed species (e.g. the carbon-carbon double bond stretching in the case of propylene and the carbon-nitrogen triple bond stretching in the case of acetonitrile) to make it quite clear that it was not merely a case of condensation in the pores of the solid adsorbent. [Pg.339]

Figure 26. Plot of the Gibbs energy of adsorption of organic substances at a = 0 vs. the interfacial parameter, AX. (1) 1-Hexanol, (2) 1-pentanol, and (3) acetonitrile. From Ref. 32, updated. Additional points (1) Au(l 11),910 Bi(l 11),152 and (2) Ga916... Figure 26. Plot of the Gibbs energy of adsorption of organic substances at a = 0 vs. the interfacial parameter, AX. (1) 1-Hexanol, (2) 1-pentanol, and (3) acetonitrile. From Ref. 32, updated. Additional points (1) Au(l 11),910 Bi(l 11),152 and (2) Ga916...
Solutes will interact with the reverse phase surface in much the same way as they do with the silica gel surface. There will be basically two forms of interaction, by sorption and by displacement. Sorption interaction has been experimentally confirmed by Scott and Kucera (10) by measuring the adsorption isotherm of acetophenone on the reverse phase RP18 from a 40%w/v acetonitrile mixture in water. The authors noted that there was no change in the acetonitrile concentration, as the solute was adsorbed. Displacement interactions, although certain to occur, do not appear to have been experimentally demonstrated to date. [Pg.79]

The performance of various solvents can be explained with the help of the role of these solvents in the reaction. These solvents help in keeping teth benzene and hydrogen peroxide in one phase. This helps in the easy transport of both the reactants to the active sites of the catalyst. The acetonitrile, and acetone adsorption data on these catalysts (Fig. 6), suggests that acetonitrile has a greater affinity to the catalytic surface than acetone. There by acetonitrile is more effective in transporting the reactants to the catalyst active sites. At the same time, they also help the products in desorbing and vacating the active sites. [Pg.280]

Added stability in PEC can be attained through the use of non-aqueous solvents. Noufi et al. [68] systematically evaluated various non-aqueous ferro-ferricyanide electrolytes (DMF, acetonitrile, PC, alcohols) for use in stabilizing n-CdSe photoanodes. Selection of the solvent was discussed in terms of inherent stability provided, the rate of the redox reaction, the tendency toward specific adsorption of the redox species, and the formal potential of the redox couple with respect to the flat band potential (attainable open-circuit voltage). On the basis of these data, the methanol/Fe(CN)6 system (transparent below 2.6 eV) was chosen as providing complete stabilization of CdSe. Results were presented for cells of the type... [Pg.224]

For multi-analyte and/or multi-matrix methods, it is not possible to validate a method for all combinations of analyte, concentration and type of sample matrix that may be encountered in subsequent use of the method. On the other hand, the standards EN1528 andEN 12393 consist of a range of old multi-residue methods. The working principles of these methods are accepted not only in Europe, but all over the world. Most often these methods are based on extractions with acetone, acetonitrile, ethyl acetate or n-hexane. Subsequent cleanup steps are based on solvent partition steps and size exclusion or adsorption chromatography on Florisil, silica gel or alumina. Each solvent and each cleanup step has been successfully applied to hundreds of pesticides and tested in countless method validation studies. The selectivity and sensitivity of GC combined with electron capture, nitrogen-phosphorus, flame photometric or mass spectrometric detectors for a large number of pesticides are acceptable. [Pg.113]

Hydrophilic interaction chromatography on Asahipak NH2P or Excel-pak CHA-P44 with pulsed amperometric detection has been used to fractionate malto-oligosaccharides.266 The Asahipak NH2P is a polyvinyl alcohol support with a polyamine bonded phase, and the Excelpak is a sulfonated polystyrene in the Zn+2 form. Amine adsorption of sialic acid-containing oligosaccharides was performed on a Micropak AX-5 column (Varian) using acetonitrile-water-acetic acid-triethylamine.267... [Pg.254]

The interaction of CO and acetonitrile with extra-framework metal-cation sites in zeolites was investigated at the periodic DFT level and using IR spectroscopy. The stability and IR spectra of adsorption complexes formed in M+-zcolitcs can be understood in detail only when both, (i) the interaction of the adsorbed molecule with the metal cation and (ii) the interaction of the opposite end of the molecule (the hydrocarbon part of acetonitrile or the oxygen atom of CO) with the zeolite are considered. These effects, which can be classified as the effect from the bottom and the effect from the top, respectively, are critically analyzed and discussed. [Pg.117]

Adsorption enthalpies and vibrational frequencies of small molecules adsorbed on cation sites in zeolites are often related to acidity (either Bronsted or Lewis acidity of H+ and alkali metal cations, respectively) of particular sites. It is now well accepted that the local environment of the cation (the way it is coordinated with the framework oxygen atoms) affects both, vibrational dynamics and adsorption enthalpies of adsorbed molecules. Only recently it has been demonstrated that in addition to the interaction of one end of the molecule with the cation (effect from the bottom) also the interaction of the other end of the molecule with a second cation or with the zeolite framework (effect from the top) has a substantial effect on vibrational frequencies of the adsorbed molecule [1,2]. The effect from bottom mainly reflects the coordination of the metal cation with the framework - the tighter is the cation-framework coordination the lower is the ability of that cation to bind molecules and the smaller is the effect on the vibrational frequencies of adsorbed molecules. This effect is most prominent for Li+ cations [3-6], In this contribution we focus on the discussion of the effect from top. The interaction of acetonitrile (AN) and carbon monoxide with sodium exchanged zeolites Na-A (Si/AM) andNa-FER (Si/Al= 8.5 and 27) is investigated. [Pg.117]

The acidic and adsorptive properties of the samples in gas phase were evaluated in a microcalorimeter of Tian-Calvet type (C80, Setaram) linked to a volumetric line. For the estimation of the acidic properties, NH3 (pKa = 9.24, proton affinity in gas phase = 857.7 kJ.mol-1, kinetic diameter = 0.375 nm) and pyridine (pKa = 5.19, proton affinity in gas phase = 922.2 kJ.mol-1, kinetic diameter = 0.533 nm) were chosen as basic probe molecules. Different VOC s such as propionaldehyde, 2-butanone and acetonitrile were used in gas phase in order to check the adsorption capacities of the samples. [Pg.202]

Acidity of both zeolites was investigated by adsorption of ammonia, pyridine, d3-acetonitrile and pivalonitrile ((CH3)3CCN) used as probe molecules followed by FTIR spectroscopy. All samples were activated in a form of self-supporting wafers at 450 °C or 550 °C under vacuum for 1 h prior to the adsorption of probe molecules. [Pg.274]

In this paper we extend our SHG studies to silver electrodes in acetonitrile solutions and to platinum electrodes in aqueous solutions. Three different examples are chosen to demonstrate how SHG can be used both qualitatively and quantitatively to study the adsorption of chemical species onto... [Pg.294]

Hydrogen Adsorption and Evolution at Silver Electrodes in Acetonitrile... [Pg.296]


See other pages where Adsorption acetonitrile is mentioned: [Pg.112]    [Pg.112]    [Pg.49]    [Pg.556]    [Pg.565]    [Pg.21]    [Pg.121]    [Pg.167]    [Pg.168]    [Pg.36]    [Pg.179]    [Pg.197]    [Pg.171]    [Pg.174]    [Pg.189]    [Pg.211]    [Pg.835]    [Pg.260]    [Pg.301]    [Pg.393]    [Pg.210]    [Pg.235]    [Pg.395]    [Pg.18]    [Pg.341]    [Pg.120]    [Pg.209]    [Pg.439]    [Pg.144]    [Pg.291]    [Pg.227]    [Pg.49]    [Pg.294]    [Pg.299]    [Pg.351]   


SEARCH



© 2024 chempedia.info