Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorbed transformation

Aardema, B. W., Lorenz, M. G. Krumbein, W. E. (1983). Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Applied and Environmental Microbiology, 46, 417-20. [Pg.51]

V). As illustrated in Fig. 1, without knowledge of Q, even the most accurate gas-phase reaction energy profiles are useless for projecting activation barriers AE for adsorbate transformations. [Pg.102]

It is noted in Sections XVII-10 and 11 that phase transformations may occur, especially in the case of simple gases on uniform surfaces. Such transformations show up in q plots, as illustrated in Fig. XVU-22 for Kr adsorbed on a graphitized carbon black. The two plots are obtained from data just below and just above the limit of stability of a solid phase that is in registry with the graphite lattice [131]. [Pg.650]

Dowrey A E and Maroott C 1982 A double-modulation Fourier transform infrared approaoh to studying adsorbates on metal surfaoes Appl. Spectrosc. 36 414-16... [Pg.1796]

The hydration shell is formed with the increasing of the water content of the sample and the NA transforms from the unordered to A- and then to B form, in the case of DNA and DNA-like polynucleotides and salt concentrations similar to in vivo conditions. The reverse process, dehydration of NA, results in the reverse conformational transitions but they take place at the values of relative humidity (r.h.) less than the forward direction [12]. Thus, there is a conformational hysteresis over the hydration-dehydration loop. The adsorption isotherms of the NAs, i.e. the plots of the number of the adsorbed water molecules versus the r.h. of the sample at constant temperature, also demonstrate the hysteresis phenomena [13]. The hysteresis is i( producible and its value does not decrease for at least a week. [Pg.117]

The final factor influencing the stabiHty of these three-phase emulsions is probably the most important one. Small changes in emulsifier concentration lead to drastic changes in the amounts of the three phases. As an example, consider the points A to C in Figure 16. At point A, with 2% emulsifier, 49% water, and 49% aqueous phase, 50% oil and 50% aqueous phase are the only phases present. At point B the emulsifier concentration has been increased to 4%. Now the oil phase constitutes 47% of the total and the aqueous phase is reduced to 29% the remaining 24% is a Hquid crystalline phase. The importance of these numbers is best perceived by a calculation of thickness of the protective layer of the emulsifier (point A) and of the Hquid crystal (point B). The added surfactant, which at 2% would add a protective film of only 0.07 p.m to emulsion droplets of 5 p.m if all of it were adsorbed, has now been transformed to 24% of a viscous phase. This phase would form a very viscous film 0.85 p.m thick. The protective coating is more than 10 times thicker than one from the surfactant alone because the thick viscous film contains only 7% emulsifier the rest is 75% water and 18% oil. At point C, the aqueous phase has now disappeared, and the entire emulsion consists of 42.3% oil and 57.5% Hquid crystalline phase. The stabilizing phase is now the principal part of the emulsion. [Pg.203]

Obviously, the theory outhned above can be applied to two- and three-dimensional systems. In the case of a two-dimensional system the Fourier transforms of the two-particle function coefficients are carried out by using an algorithm, developed by Lado [85], that preserves orthogonality. A monolayer of adsorbed colloidal particles, having a continuous distribution of diameters, has been investigated by Lado. Specific calculations have been carried out for the system with the Schulz distribution [86]... [Pg.156]

Most microscopic theories of adsorption and desorption are based on the lattice gas model. One assumes that the surface of a sohd can be divided into two-dimensional cells, labelled i, for which one introduces microscopic variables Hi = 1 or 0, depending on whether cell i is occupied by an adsorbed gas particle or not. (The connection with magnetic systems is made by a transformation to spin variables cr, = 2n, — 1.) In its simplest form a lattice gas model is restricted to the submonolayer regime and to gas-solid systems in which the surface structure and the adsorption sites do not change as a function of coverage. To introduce the dynamics of the system one writes down a model Hamiltonian which, for the simplest system of a one-component adsorbate with one adsorption site per unit cell, is... [Pg.443]

In the glass-bottle industry the bottles can be cooled in a dilute SOj/SO, atmosphere to increase chemical resistance. A similar effect has been noted with vitreous enamel. It has been postulated that a thin layer of —OH groups or — OH—HjO (hydronium) ions is adsorbed on the surface of a fired enamel. These ions are transformed into — OSO, or —OSO3 in the presence of oxides of sulphur which are more resistant to further acid attack. It is known that the acid resistance of a recently fired enamel improves on ageing, probably due to the enamel reaction with SOj/SO, in the atmosphere and it is quite common for the grading to improve from Class A to Class AA (BS 1344). [Pg.742]

Rheological methods of measuring the interphase thickness have become very popular in science [50, 62-71]. Usually they use the viscosity versus concentration relationships in the form proposed by Einstein for the purpose [62-66], The factor K0 in Einstein s equation typical of particles of a given shape is evaluated from measurements of dispersion of the filler in question in a low-molecular liquid [61, 62], e.g., in transformer oil [61], Then the viscosity of a suspension of the same filler in a polymer melt or solution is determined, the value of Keff is obtained, and the adsorbed layer thickness is calculated by this formula [61,63,64] ... [Pg.8]

If, for the purpose of comparison of substrate reactivities, we use the method of competitive reactions we are faced with the problem of whether the reactivities in a certain series of reactants (i.e. selectivities) should be characterized by the ratio of their rates measured separately [relations (12) and (13)], or whether they should be expressed by the rates measured during simultaneous transformation of two compounds which thus compete in adsorption for the free surface of the catalyst [relations (14) and (15)]. How these two definitions of reactivity may differ from one another will be shown later by the example of competitive hydrogenation of alkylphenols (Section IV.E, p. 42). This may also be demonstrated by the classical example of hydrogenation of aromatic hydrocarbons on Raney nickel (48). In this case, the constants obtained by separate measurements of reaction rates for individual compounds lead to the reactivity order which is different from the order found on the basis of factor S, determined by the method of competitive reactions (Table II). Other examples of the change of reactivity, which may even result in the selective reaction of a strongly adsorbed reactant in competitive reactions (49, 50) have already been discussed (see p. 12). [Pg.20]

From the study of the influencing of single reactions by products and by other added substances and from the analysis of mutual influencing of reactions in coupled systems, the following conclusions can be drawn concerning adsorption of the reaction components. (1) With the exception of crotyl alcohol on the platinum-iron-silica gel catalyst, all the substances present in the coupled system, i.e. reactants, intermediate products, and final products, always adsorbed on the same sites of the catalytic surface (competitive adsorption). This nonspecificity was established also in our other studies (see Section IV.F.2) and was stated also by, for example, Smith and Prater (32), (2) The adsorption of starting reactants and the desorption of the intermediate and final products appeared in our studies always as faster, relative to the rate of chemical transformations of adsorbed substances on the surface of the catalyst. [Pg.49]

Electrocatalytic reactions, such as the transformation of O2 from the zirconia lattice to oxygen adsorbed on the film at or near the three-phase-boundaries, which we denote by 0(a), have been found to take place primarily at these three phase boundaries.5 8 This electrocatalytic reaction will be denoted by ... [Pg.114]

Adsorption phenomena from solutions onto sohd surfaces have been one of the important subjects in colloid and surface chemistry. Sophisticated application of adsorption has been demonstrated recently in the formation of self-assembhng monolayers and multilayers on various substrates [4,7], However, only a limited number of researchers have been devoted to the study of adsorption in binary hquid systems. The adsorption isotherm and colloidal stabihty measmement have been the main tools for these studies. The molecular level of characterization is needed to elucidate the phenomenon. We have employed the combination of smface forces measmement and Fomier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR) to study the preferential (selective) adsorption of alcohol (methanol, ethanol, and propanol) onto glass surfaces from their binary mixtures with cyclohexane. Om studies have demonstrated the cluster formation of alcohol adsorbed on the surfaces and the long-range attraction associated with such adsorption. We may call these clusters macroclusters, because the thickness of the adsorbed alcohol layer is about 15 mn, which is quite large compared to the size of the alcohol. The following describes the results for the ethanol-cycohexane mixtures [10],... [Pg.3]

In other words, we have expressed the interaction between the adsorbate and the metal in terms of A(e) and /1(e), which essentially represent the overlap between the states of the metal and the adsorbate multiplied by a hopping matrix element A(e) is the Kronig-Kramer transform of A(e). Let us consider a few simple cases in which the results can be easily interpreted. [Pg.239]

Fourier Transform IR Studies of Surface Adsorbates and Surface-Mediated Reactions... [Pg.435]

Recent work in our laboratory has shown that Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) can be used routinely to measure vibrational spectra of a monolayer on a low area metal surface. To achieve sensitivity and resolution, a pseudo-double beam, polarization modulation technique was integrated into the FT-IR experiment. We have shown applicability of FT-IRRAS to spectral measurements of surface adsorbates in the presence of a surrounding infrared absorbing gas or liquid as well as measurements in the UHV. We now show progress toward situ measurement of thermal and hydration induced conformational changes of adsorbate structure. The design of the cell and some preliminary measurements will be discussed. [Pg.435]


See other pages where Adsorbed transformation is mentioned: [Pg.166]    [Pg.166]    [Pg.193]    [Pg.636]    [Pg.640]    [Pg.286]    [Pg.509]    [Pg.10]    [Pg.541]    [Pg.124]    [Pg.224]    [Pg.304]    [Pg.412]    [Pg.415]    [Pg.225]    [Pg.150]    [Pg.156]    [Pg.163]    [Pg.288]    [Pg.18]    [Pg.110]    [Pg.42]    [Pg.140]    [Pg.184]    [Pg.185]    [Pg.90]    [Pg.212]    [Pg.150]    [Pg.108]    [Pg.657]    [Pg.235]    [Pg.239]    [Pg.90]    [Pg.227]    [Pg.436]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Adsorbed layer, organic transformations

© 2024 chempedia.info