Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions product selectivity

It was found that some organic solid-solid reactions proceed very efficiently and selectively in the presence of a small amount of solvent vapor. For example, when a solution of 34 and 35 in MeOH was kept at room temperature for 1 h, the Michael addition reaction product 36 was obtained in 71% yield (Table 2.2.2) [19]. In contrast, the reaction in the solid state gave 36 in a poor yield. Heating a mixture of 34 and 35 at 100 °C for 4h gave 36 in only 21% yield. However, when the reaction was carried out at room temperature in the presence of MeOH vapor for 1 h, the result was 36 in 63 % yield. By prolongation of the reaction to 2 and 4 h, the yield increased to 81 and 90%, respectively. The efficiency of these reactions under MeOH vapor is much better than that of the same solid-solid reaction and the solution reaction in MeOH (Table 2.2.2). [Pg.156]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Halogen-substituted succinimides are a class of products with important appHcations. /V-Bromosuccinimide [128-08-5] mp 176—177°C, is the most important product ia this group, and is prepared by addition of bromine to a cold aqueous solution of succinimide (110,111) or by reaction of succinimide with NaBr02 iu the presence of HBr (112). It is used as a bromination and oxidation agent ia the synthesis of cortisone and other hormones. By its use it is possible to obtain selective bromine substitution at methylene groups adjacent to double bonds without addition reactions to the double bond (113). [Pg.536]

Separation and Purification of Isomers. 1-Butene and isobutylene caimot be economically separated into pure components by conventional distHlation because they are close boiling isomers (see Table 1 and Eig. 1). 2-Butene can be separated from the other two isomers by simple distHlation. There are four types of separation methods avaHable (/) selective removal of isobutylene by polymeriza tion and separation of 1-butene (2) use of addition reactions with alcohol, acids, or water to selectively produce pure isobutylene and 1-butene (3) selective extraction of isobutylene with a Hquid solvent, usuaHy an acid and (4) physical separation of isobutylene from 1-butene by absorbents. The first two methods take advantage of the reactivity of isobutylene. Eor example, isobutylene reacts about 1000 times faster than 1-butene. Some 1-butene also reacts and gets separated with isobutylene, but recovery of high purity is possible. The choice of a particular method depends on the product slate requirements of the manufacturer. In any case, 2-butene is first separated from the other two isomers by simple distHlation. [Pg.368]

The nucleophilic reaction of bromotrifluoroethene with alkoxides yields not only the expected addition and addition-elimination products but also a product from a bromophilic reaction of the carbanion intermediate [6] (equation 3) Similar are the reactions of sodium phenoxide with perfluorovinyl ethers in the presence of hexachloroethane or selected vicinal dibromoperfluoroalkanes The intermediate carbanion is trapped in high yield by these sources of Cl or Br, which suggests a... [Pg.729]

The observation that addition of imidazoles and carboxylic acids significantly improved the epoxidation reaction resulted in the development of Mn-porphyrin complexes containing these groups covalently linked to the porphyrin platform as attached pendant arms (11) [63]. When these catalysts were employed in the epoxidation of simple olefins with hydrogen peroxide, enhanced oxidation rates were obtained in combination with perfect product selectivity (Table 6.6, Entry 3). In contrast with epoxidations catalyzed by other metals, the Mn-porphyrin system yields products with scrambled stereochemistry the epoxidation of cis-stilbene with Mn(TPP)Cl (TPP = tetraphenylporphyrin) and iodosylbenzene, for example, generated cis- and trans-stilbene oxide in a ratio of 35 65. The low stereospecificity was improved by use of heterocyclic additives such as pyridines or imidazoles. The epoxidation system, with hydrogen peroxide as terminal oxidant, was reported to be stereospecific for ris-olefins, whereas trans-olefins are poor substrates with these catalysts. [Pg.202]

The use of various heterocyclic additives in the MTO-catalyzed epoxidation has been demonstrated to be of great importance for substrate conversion, as well as for the product selectivity. With regard to selectivity, the role of the additive is obviously to protect the product epoxides from deleterious, acid-catalyzed (Brons-ted or Lewis acid) ring-opening reactions. This can be achieved by direct coordination of the heterocyclic additive to the rhenium metal, thereby significantly decreasing its Lewis acidity. In addition, the basic nature of the additives will increase the pH of the reaction media. [Pg.214]

In addition to the boron trifluoride-diethyl ether complex, chlorotrimcthylsilanc also shows a rate accelerating effect on cuprate addition reactions this effect emerges only if tetrahydrofuran is used as the reaction solvent. No significant difference in rate and diastereoselectivity is observed in diethyl ether as reaction solvent when addition of the cuprate, prepared from butyllithium and copper(I) bromide-dimethylsulfide complex, is performed in the presence or absence of chlorotrimethylsilane17. If, however, the reaction is performed in tetrahydrofuran, the reaction rate is accelerated in the presence of chlorotrimethylsilane and the diastereofacial selectivity increases to a ratio of 88 12 17. In contrast to the reaction in diethyl ether, the O-silylated product is predominantly formed in tetrahydrofuran. The alcohol product is only formed to a low extent and showed a diastereomeric ratio of 55 45, which is similar to the result obtained in the absence of chlorotrimethylsilane. This discrepancy indicates that the selective pathway leading to the O-silylated product is totally different and several times faster than the unselective pathway" which leads to the unsilylated alcohol adduct. A slight further increase in the Cram selectivity was achieved when 18-crown-6 was used in order to increase the steric bulk of the reagent. [Pg.27]

Results of nucleophilic addition reactions to various a-oxo 4,5-dihydrooxazoles are summarized in Table 24. In general, the diastereoselectivity of these reactions is low to moderate, although an increased selectivity is found in the presence of triethylamine or N,N,N, N -te-tramethylethylenediamine, which slow down the rate of reaction. Nevertheless, enantiomerical-ly pure 2-hydroxy carboxylic acids can be prepared by this method, since the diastereomeric addition products are separable either by recrystallization or HPLC21. [Pg.104]

There have been many instances of examination of the effect of additive product on the initiation of nucleation and growth processes. In early work on the dehydration of crystalline hydrates, reaction was initiated on all surfaces by rubbing with the anhydrous material [400]. An interesting application of the opposite effect was used by Franklin and Flanagan [62] to inhibit reaction at selected crystal faces of uranyl nitrate hexa-hydrate by coating with an impermeable material. In other reactions, the product does not so readily interact with reactant surfaces, e.g. nickel metal (having oxidized boundaries) does not detectably catalyze the decomposition of nickel formate [222],... [Pg.36]

The syntheses and spectroscopic and electrochemical characterization of the rhodium and iridium porphyrin complexes (Por)IVI(R) and (Por)M(R)(L) have been summarized in three review articles.The classical syntheses involve Rh(Por)X with RLi or RMgBr, and [Rh(Por) with RX. In addition, reactions of the rhodium and iridium dimers have led to a wide variety of rhodium a-bonded complexes. For example, Rh(OEP)]2 reacts with benzyl bromide to give benzyl rhodium complexes, and with monosubstituted alkenes and alkynes to give a-alkyl and fT-vinyl products, respectively. More recent synthetic methods are summarized below. Although the development of iridium porphyrin chemistry has lagged behind that of rhodium, there have been few surprises and reactions of [IrfPorih and lr(Por)H parallel those of the rhodium congeners quite closely.Selected structural data for rr-bonded rhodium and iridium porphyrin complexes are collected in Table VI, and several examples are shown in Fig. 7. ... [Pg.295]


See other pages where Addition reactions product selectivity is mentioned: [Pg.50]    [Pg.186]    [Pg.57]    [Pg.63]    [Pg.538]    [Pg.210]    [Pg.872]    [Pg.320]    [Pg.505]    [Pg.505]    [Pg.346]    [Pg.441]    [Pg.646]    [Pg.468]    [Pg.180]    [Pg.687]    [Pg.113]    [Pg.202]    [Pg.278]    [Pg.295]    [Pg.483]    [Pg.759]    [Pg.769]    [Pg.8]    [Pg.22]    [Pg.28]    [Pg.32]    [Pg.48]    [Pg.51]    [Pg.55]    [Pg.64]    [Pg.67]    [Pg.71]    [Pg.132]    [Pg.173]    [Pg.173]    [Pg.251]    [Pg.1037]    [Pg.72]    [Pg.290]   
See also in sourсe #XX -- [ Pg.918 ]




SEARCH



1,2-addition product

Additive production

Additives, selectivity

Product selection

Product-selective reactions

Reaction selective

Reactions selection

Selected reactions

Selectivity reactions

© 2024 chempedia.info