Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions, polymers formation

The addition polymerization of a vinyl monomer CH2=CHX involves three distinctly different steps. First, the reactive center must be initiated by a suitable reaction to produce a free radical or an anion or cation reaction site. Next, this reactive entity adds consecutive monomer units to propagate the polymer chain. Finally, the active site is capped off, terminating the polymer formation. If one assumes that the polymer produced is truly a high molecular weight substance, the lack of uniformity at the two ends of the chain—arising in one case from the initiation, and in the other from the termination-can be neglected. Accordingly, the overall reaction can be written... [Pg.14]

Certain polymeric stmctures can also be blended with other coreactive polymers or multifunctional reactive oligomers that affect curing reactions when exposed to ir radiation. These coreactive polymers and cross-linking oligomers undergo condensation or addition reactions, which cause the formation of network stmctures (Table 9) (4,5,47). [Pg.430]

Because PEA is such an important fragrance material this simple, essentially one-step process has been exhaustively studied to optimize reaction conditions and purification procedures. Because of the high reactivity of the iatermediates and the tendency toward polymer formation, critical factors such as throughput, temperature, molar ratios of reactants, addition rates, reactor materials and design, and agitation rate must be carefully balanced to provide an economical product with acceptable odor properties. [Pg.62]

The nucleophilic addition reaction of urea to formaldehyde produces mainly monomethylol urea and some dimethylol urea. When the mixture is heated in presence of an acid, condensation occurs, and water is released. This is accompanied by the formation of a cross inked polymer ... [Pg.349]

Polymer formation during the Kharasch reaction or ATRA can occur if trapping of the radical (123), by halocarbon or metal complex respectively, is sufficiently slow such that multiple monomer additions can occur. Efficient polymer synthesis additionally requires that the trapping reaction is reversible and that both the activation and deactivation steps are facile. [Pg.486]

When the substituent groups in the polyphosphazenes were azobenzene [719] or spiropyran [720] derivatives, photochromic polymers were obtained, showing reversible light-induced trans-cis isomerization or merocyanine formation, respectively. Only photocrosslinking processes by [2+2] photo-addition reactions to cyclobutane rings could be observed when the substituent groups on the phosphazene backbone were 4-hydroxycinnamates [721-723] or 4-hydroxychalcones [722-724]. [Pg.224]

Temperature control at -15° to -25°C was also required for maximum yield. The best results were obtained by maintaining a temperature of -20 to -25°C during the addition of citral anil to the acid and at -15°C for the duration of the reaction. At this temperature range, the formation of a-cyclocitral (III) is favored. Higher temperatures caused excessive polymer formation and favored formation of e-cyclocitral whereas lower temperatures caused a reduction 1n the yield of the citral mixture. At least part of the problem with the lower temperature reaction was the fact that the sulfuric acid tended to freeze around the inside of the reaction vessel causing the effective molar ratio of acid to anil to be reduced. These lower temperature reaction mixtures were also lighter in color which indicated less polymer formation but this was accompanied by a lower yield of cyclocitrals. [Pg.419]

Despite the enormous importance of dienes as monomers in the polymer field, the use of radical addition reactions to dienes for synthetic purposes has been rather limited. This is in contrast to the significant advances radical based synthetic methodology has witnessed in recent years. The major problems with the synthetic use of radical addition reactions to polyenes are a consequence of the nature of radical processes in general. Most synthetically useful radical reactions are chain reactions. In its most simple form, the radical chain consists of only two chain-carrying steps as shown in Scheme 1 for the addition of reagent R—X to a substituted polyene. In the first of these steps, addition of radical R. (1) to the polyene results in the formation of adduct polyenyl radical 2, in which the unpaired spin density is delocalized over several centers. In the second step, reaction of 2 with reagent R—X leads to the regeneration of radical 1 and the formation of addition products 3a and 3b. Radical 2 can also react with a second molecule of diene which leads to the formation of polyene telomers. [Pg.619]

Mass spectrometer studies of oxidant additions to fluoro- and chlorocarbon gases have demonstrated that the relative reactivity of atoms with unsaturate species in a glow discharge follows the sequence F -- O > Cl > Br (41), Of course, the most reactive species present will preferentially undergo saturation reactions that reduce polymer formation and that may increase halogen atom concentration. Ultimately, determination of the relative reactivity of the plasma species allows prediction of the primary atomic etchants in a plasma of specific composition. [Pg.237]

With the above-mentioned variety of addition reactions based on the addition-elimination mechanism almost any functional group or molecule can be attached to CgQ. Some examples are acetylenes [43, 52], peptides [53], DNA-fragments [53], polymers [54], macrocycles [55, 56], porphyrins [56, 57], dendrimers [58-60] or ligands for complex formation [56], Cjq can be turned into hybrids that are biologically active, water soluble, amphiphilic or mixable with polymers [53-55, 58, 61-69],... [Pg.84]

The kinetics of template polymerization depends, in the first place, on the type of polyreaction involved in polymer formation. The polycondensation process description is based on the Flory s assumptions which lead to a simple (in most cases of the second order), classic equation. The kinetics of addition polymerization is based on a well known scheme, in which classical rate equations are applied to the elementary processes (initiation, propagation, and termination), according to the general concept of chain reactions. [Pg.89]

The preparation of polymers from heterocyclic monomers that contain polymerizable functional groups undoubtedly constitutes the most common method of incorporating heterocycles into polymeric materials. Polymer-forming reactions are of two possible types addition reactions and condensation reactions. Addition monomers in general contain a site of unsaturation, i.e. a double or triple bond, through which polymerization occurs by successive single bond formation from one monomer to the next. With condensation monomers a bond is formed between two monomers with concomitant elimination of a... [Pg.270]

All polycondensation reactions were followed by FT-IR-spectroscopy. Polyamide formation could be demonstrated by the disappearance of the ester C = 0 stretching mode and simultaneous formation of amide C = 0 stretching modes32>. Additional proof for polymer formation is given by gel permeation chromatography. From the elution volumes a molecular weight between 2,000 and 10,000 can be estimated. [Pg.16]

A number of other polar monomers have been polymerized with butyllithium, nominally in hydrocarbon or aromatic solvents. In almost all cases the monomer concentration was so high that the effective dielectric constant was much greater than in a pure hydrocarbon. All show rather complex behaviour. The degree of polymerization of the polymer formed is always much higher than the initial monomer-catalyst ratio so that a simple scheme involving only initiation and propagation reactions is not applicable. Only precipitable polymer was isolated, so it is not sure if the low initiator efficiencies are due to low polymer formation or to side reactions of butyllithium with the monomer. In addition most systems studied stop before complete conversion of the monomer. Evidently the small fraction of active polymer chains formed... [Pg.88]


See other pages where Addition reactions, polymers formation is mentioned: [Pg.182]    [Pg.428]    [Pg.348]    [Pg.480]    [Pg.346]    [Pg.538]    [Pg.538]    [Pg.539]    [Pg.54]    [Pg.157]    [Pg.6]    [Pg.5]    [Pg.906]    [Pg.249]    [Pg.197]    [Pg.133]    [Pg.69]    [Pg.500]    [Pg.966]    [Pg.172]    [Pg.383]    [Pg.558]    [Pg.317]    [Pg.165]    [Pg.69]    [Pg.220]    [Pg.76]    [Pg.275]    [Pg.155]    [Pg.247]    [Pg.185]    [Pg.179]    [Pg.188]    [Pg.1434]    [Pg.1138]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 , Pg.278 ]




SEARCH



Addition polymers polymer

Addition reaction polymers

Polymer additives

Polymers, addition

© 2024 chempedia.info