Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions continued oxidative

Other reactions taking place throughout the hardening period are substitution and addition reactions (29). Ferrite and sulfoferrite analogues of calcium monosulfoaluminate and ettringite form soHd solutions in which iron oxide substitutes continuously for the alumina. Reactions with the calcium sihcate hydrate result in the formation of additional substituted C—S—H gel at the expense of the crystalline aluminate, sulfate, and ferrite hydrate phases. [Pg.288]

Sealants obtained by curing polysulfide liquid polymers with aryl bis(nitrile oxides) possess stmctural feature of thiohydroximic acid ester. These materials exhibit poor thermal stability when heated at 60°C they soften within days and liquefy in 3 weeks. Products obtained with excess nitrile oxide degrade faster than those produced with equimolar amounts of reagents. Spectroscopic studies demonstrate that, after an initial rapid addition between nitrile oxide and thiol, a second slower reaction occurs which consumes additional nitrile oxide. Thiohydroximic acid derivatives have been shown to react with nitrile oxides at ambient temperature to form 1,2,4-oxadiazole 4-oxides and alkyl thiol. In the case of a polysulfide sealant, the rupture of a C-S bond to form the thiol involves cleavage of the polymer backbone. Continuation of the process leads to degradation of the sealant. These observations have been supported by thermal analysis studies on the poly sulfide sealants and model polymers (511). [Pg.104]

The greatest advantage is the electrocatalytic mode of oxidation. In chemical oxidations the reduced form of the oxidant is obtained as by-product. This needs a careful waste treatment to prevent pollutional problems or it has to be regenerated in an additional reaction. At the nickel hydroxide electrode, however, nickel oxide hydroxide is continuously reformed from the hydroxide, so that only electric current is used as reagent. This makes this oxidation also of interest for technical applications. [Pg.125]

The selective oxidation of C—H bonds in alkanes under mild conditions continues to attract interest from researchers. A new procedure based upon mild generation of perfluoroalkyl radicals from their corresponding anhydrides with either H2O2, m-CPBA, AIBN, or PbEt4 has been described. Oxidation of ethane under the reported conditions furnishes propionic acid and other fluorinated products.79 While some previously reported methods have involved metal-mediated functionalization of alkanes using trifluoroacetic acid/anhydride as solvent, these latter results indicate that the solvent itself without metal catalysis can react as an oxidant. As a consequence, results of these metal-mediated reactions should be treated with caution. The absolute rate constants for H-abstraction from BU3 SnH by perfluorinated w-alkyl radicals have been measured and the trends were found to be qualitatively similar to that of their addition reactions to alkenes.80 a,a-Difluorinated radicals were found to have enhanced reactivities and this was explained as being due to their pyramidal nature while multifluorinated radicals were more reactive still, owing to their electrophilic nature.80... [Pg.112]

Examples of nitrogen-containing heterocycle syntheses based on condensation reactions continue to be forthcoming. Examples include a tandem oxidation-annulation of propargyl alcohols in a one-pot synthesis of pyridines (Equation 148) <2003SL1443>, trifluoromethyl-substituted pyridines (Scheme 94) <2003S1531>, and standard malononitrile additions to a,/3-unsaturated ketones <1995JCM392>. [Pg.274]

Reactions (2) and (3) indicate processes that regenerate Fe2+ in the catalytic cycle. As long as peroxide is available in the system, the iron species continually cycle between Fe2+ and Fe3+, unless additional reactions result in formation of insoluble iron oxides and hydroxides. The rate of formation of hydroxyl radical can be expressed as ... [Pg.173]

Organometallic compounds are used widely as homogeneous catalysts in the chemical industry. For example, if the alkene insertion reaction continues with further alkene inserting into the M C bond, it can form the basis for catalytic alkene polymerisation. Other catalytic cycles may include oxidative addition and reductive elimination steps. Figure above shows the steps involved in the Monsanto acetic acid process, which performs the conversion... [Pg.116]

Addition of a base (pyridine or methoxyethylamine), which can mix with the continuous phase to the cyclohexane-salt miniemulsion under stirring, provides reaction to oxides and hydroxides, e.g., from iron(III) chloride hexahydrate to iron(III) oxide. Here the crystal water steps into the reaction, while pyridine from the continuous phase neutralizes the eliminated HCl. Obviously, the interface area of the miniemulsion is high enough in order to allow this reaction. [Pg.118]

Additionally, reaction (6) can also take place in this system if H2O2 is in excess. Moreover, hydroxyl radicals can also be trapped by excess of ferrous ions (reaction (7)). Thus, despite the advantages such as commercial availability of the oxidant, no mass transfer problems, and formation of hydroxyl radicals from H2O2, this process presents several serious drawbacks. One of the most important one is that H2O2 has to be continuously added in controlled amoimts as a source of hydroxyl radicals (Domenech et al., 2004). [Pg.75]

Vanadium phosphates have been established as selective hydrocarbon oxidation catalysts for more than 40 years. Their primary use commercially has been in the production of maleic anhydride (MA) from n-butane. During this period, improvements in the yield of MA have been sought. Strategies to achieve these improvements have included the addition of secondary metal ions to the catalyst, optimization of the catalyst precursor formation, and intensification of the selective oxidation process through improved reactor technology. The mechanism of the reaction continues to be an active subject of research, and the role of the bulk catalyst structure and an amorphous surface layer are considered here with respect to the various V-P-O phases present. The active site of the catalyst is considered to consist of V and V couples, and their respective incidence and roles are examined in detail here. The complex and extensive nature of the oxidation, which for butane oxidation to MA is a 14-electron transfer process, is of broad importance, particularly in view of the applications of vanadium phosphate catalysts to other processes. A perspective on the future use of vanadium phosphate catalysts is included in this review. [Pg.189]

Termination is one of those nebulous handwaving terms used to imply that a process is coming to a close. In hpid oxidation, termination is an even fuzzier concept in that, from a practical standpoint, the lipid oxidation chains probably never fully stop. In addition, a specific radical may be terminated and form some product, but if this occurs by H abstraction or rearrangement, another radical is left behind so the chain reaction continues. Net oxidation slows down when H abstractions or other radical quenching processes exceed the rate of new chain production, but it would be difficult indeed to totally stop the entire radical chain reaction. Thus, in the discussion below, termination refers to an individual radical, not the overall reaction. [Pg.376]

On the other hand, it has been known a process for producing piperonal by carrying out an addition reaction and an oxidation reaction continuously without separating and purifying 3,4-methylenedioxymandelic acid in the course of the operations (Japanese Provisional Patent Publication No. 330755/1995). In this process, a relatively high quality piperonal can be produced with high yield. However, at the time of oxidation reaction, 1,2-methylenedioxy-4-nitrobenzene is contaminated in crude piperonal in an amount of 0.5 to 1.0% by weight or so. This... [Pg.151]


See other pages where Addition reactions continued oxidative is mentioned: [Pg.144]    [Pg.76]    [Pg.21]    [Pg.4]    [Pg.468]    [Pg.974]    [Pg.164]    [Pg.429]    [Pg.39]    [Pg.452]    [Pg.664]    [Pg.5]    [Pg.79]    [Pg.391]    [Pg.393]    [Pg.428]    [Pg.1434]    [Pg.240]    [Pg.112]    [Pg.353]    [Pg.336]    [Pg.493]    [Pg.377]    [Pg.371]    [Pg.135]    [Pg.145]    [Pg.650]    [Pg.354]    [Pg.625]    [Pg.1786]    [Pg.452]    [Pg.318]    [Pg.152]    [Pg.92]    [Pg.357]    [Pg.845]    [Pg.120]    [Pg.302]   
See also in sourсe #XX -- [ Pg.289 , Pg.290 , Pg.291 , Pg.292 , Pg.293 , Pg.294 , Pg.295 , Pg.783 , Pg.801 ]




SEARCH



Addition reactions (continued

Addition-oxidation reactions

Addition—Continual

Continuous oxidation

Continuous reactions

Oxidation oxidative addition reaction

Oxidation—continued

Oxidative addition reactions

© 2024 chempedia.info