Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specifity of radical

In this section, the reactions undergone by radicals generated in the initiation or chain transfer processes are detailed. Emphasis is placed on the specificity of radical-monomer reactions and other processes likely to take place in polymerization media under typical polymerization conditions. The various factors important in determining the rate and selectivity of radicals in addition and... [Pg.111]

Gas-Solid Heterogeneous Reaction Mixtures. Gas-solid heterogeneous reaction mixtures may be advantageously irradiated in annular (immersion-type) photochemical reactors. Again, the content of solid particles is limiting the size and the productivity of the reactor system. This is of particular importance when the solid support is used to specifically adsorb substrates or products of the photochemical reaction the first to enhance specificity of radical substitution reactions [20], the latter to reach better photostability and to ensure optimal purity. [Pg.243]

Davin, L. B., and Lewis, N. G., 2000, Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis, Plant Physiol. 123 453-461. [Pg.136]

I he propagation step of radical polymerization comprises a sequence of radical additions to carbon-carbon double bonds. The factors that govern the rale and specificity of radical addition have been dealt with in general tenns in Section... [Pg.167]

The effect observed is quite dramatic. The specificity of radical is greatly enhanced by DEASC. The proposed mechanism involves complex fomiation between the initiator and DEASC leading to a complexed radical on photolysis. This radical is more electron deficient than the corresponding uncomplexed form and shows enhanced reactivity towards styrene, relative to methyl methacrylate. [Pg.24]

Although most of the bulky methacrylates described so far give isotactic polymers by radical polymerization as well as by anionic poljmierization at low temperatures, the isotactic specificity of radical polymerization is generally lower than that of anionic polymerization. However,... [Pg.639]

A comprehensive survey of kinetics, mechanism, and specificity of radical-monomer reactions compiled from the literature through mid-2005 is provided in The Chemistry of Radical Polymerization ... [Pg.66]

Heterogeneous photochemical reactions fall in the general category of photochemistry—often specific adsorbate excited states are involved (see, e.g.. Ref. 318.) Photodissociation processes may lead to reactive radical or other species electronic excited states may be produced that have their own chemistry so that there is specificity of reaction. The term photocatalysis has been used but can be stigmatized as an oxymoron light cannot be a catalyst—it is not recovered unchanged. [Pg.738]

An increase in the rate of radical production in emulsion polymerisation will reduce the molecular weight since it will increase the frequency of termination. An increase in the number of particles will, however, reduce the rate of entry of radicals into a specific micelle and increase molecular weight. Thus at constant initiator concentration and temperature an increase in micelles (in effect in soap concentration) will lead to an increase in molecular weight and in rate of conversion. [Pg.33]

There are only a few fimctional groups that contain an unpaired electron and yet are stable in a wide variety of structural environments. The best example is the nitroxide group, and numerous specific nitroxide radicals have been prepared and characterized. The unpaired electron is delocalized between nitrogen and oxygen in a structure with an N—O bond order of 1.5. [Pg.665]

There are several reactions that are frequently used to generate free radicals, both for the study of radical structure and reactivity and also in synthetic processes. Some of the most general methods are outlined here. These reactions will be encountered again when specific examples are discussed. For the most part, we will defer discussion of the reactions of the radicals until then. [Pg.672]

Intramolecular addition reactions are quite common when radicals are generated in molecules with unsaturation in a sterically favorable position. Cyclization reactions based on intramolecular addition of radical intermediates have become synthetically useful, and several specific cases will be considered in Section 10.3.4 of Part B. [Pg.719]

The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

Atom or radical transfer reactions generally proceed by a SH2 mechanism (substitution, homolytie, bimolecular) that can be depicted as shown in Figure 1.6. This area has been the subject of a number of reviews.1 3 27 97 99 The present discussion is limited, in the main, to hydrogen atom abstraction from aliphatic substrates and the factors which influence rate and specificity of this reaction. [Pg.29]

It has been proposed that aromatic solvents, carbon disulfide, and sulfur dioxide form a complex with atomic chlorine and that this substantially modifies both its overall reactivity and the specificity of its reactions.126 For example, in reactions of Cl with aliphatic hydrocarbons, there is a dramatic increase in Ihe specificity for abstraction of tertiary or secondary over primary hydrogens in benzene as opposed to aliphatic solvents. At the same time, the overall rate constant for abstraction is reduced by up to two orders of magnitude in the aromatic solvent.1"6 The exact nature of the complex responsible for this effect, whether a ji-coinplex (24) or a chlorocyclohexadienyl radical (25), is not yet resolved.126- 22... [Pg.34]

A simple unifying theory to explain rate and specificity in atom abstraction reactions has yet to be developed. However, as with addition reactions, it is possible to devise a set of guidelines to predict qualitatively the rate and outcome of radical transfer processes. The following are based on those suggested by Tedder 2... [Pg.36]

The transition state for disproportionation requires overlap of the p C—H bond undergoing scission and the p-orbital containing the unpaired electron.18 This requirement rationalizes the specificity observed in disproportionation of radicals 29 (Section 1.4,2) and provides an explanation for the persistency of the triisopropylmcthyl radical (33) and related species (Section 1.4.3.2).166 In the case of 33, the P-bydrogens are constrained to lie in the nodal plane of the p-orbital due to stcric buttressing between the methyls of the adjacent isopropyls. [Pg.41]

It is the aim of this chapter to describe the nature, selectivity, and efficiency of initiation. Section 3.2 summarizes the various reactions associated with initiation and defines the terminology used in describing the process. Section 3.3 details the types of initiators, indicating the radicals generated, the byproducts formed (initiator efficiency), and any side reactions (e.g. transfer to initiator). Emphasis is placed on those initiators that see widespread usage. Section 3.4 examines the properties and reactions of the radicals generated, paying particular attention to the specificity of their interaction with monomers and other components of a polymerization system. Section 3.5 describes some of the techniques used in the study of initiation. [Pg.50]

Radicals can be classified according to their tendency to give aromatic substitution, abstraction, double bond addition, or (3-scission and further classified in terms of the specificity of these reactions (see 3.4). With this knowledge, it should be possible to choose an initiator according to its suitability for use with a given monomer or monomer system so as to avoid the formation of undesirable end groups or, alternatively, to achieve a desired functionality. [Pg.53]

The transient radicals produced in reactions of hydroxy radicals with vinyl monomers in aqueous solution have been detected directly by EPR43 439 or UV spectroscopy,440-441 These studies indicate that hydroxy radicals react with monomers and other species at or near the diffusion-controlled limit ( Table 3.7). However, high reactivity does not mean a complete lack of specificity. Hydroxy radicals are electrophilic and trends in the relative reactivity of the hydroxy radicals toward monomers can be explained on this basis/97... [Pg.128]

The rate of oxidation/reduction of radicals is strongly dependent on radical structure. Transition metal reductants (e.g. TiMt) show selectivity for electrophilic radicals (e.g. those derived by tail addition to acrylic monomers or alkyl vinyl ketones - Scheme 3.89) >7y while oxidants (CuM, Fe,M) show selectivity for nucleophilic radicals (e.g. those derived from addition to S - Scheme 3,90).18 A consequence of this specificity is that the various products from the reaction of an initiating radical with monomers will not all be trapped with equal efficiency and complex mixtures can arise. [Pg.136]

When a polymer is prepared by radical polymerization, the initiator derived chain-end functionality will depend on the relative significance and specificity of the various chain end forming reactions. Tlius, for the formation of telechelic polymers ... [Pg.375]

Firstly, the classical theories on radical reactivity and polymerization mechanism do not adequately explain the rate and specificity of simple radical reactions. As a consequence, they can not be used to predict the manner in which polymerization rate parameters and details of polymer microstructurc depend on reaction conditions, conversion and molecular weight distribution. [Pg.663]

For an incompressible fluid, the density variation with temperature is negligible compared to the viscosity variation. Hence, the viscosity variation is a function of temperature only and can be a cause of radical transformation of flow and transition from stable flow to the oscillatory regime. The critical Reynolds number also depends significantly on the specific heat, Prandtl number and micro-channel radius. For flow of high-viscosity fluids in micro-channels of tq < 10 m the critical Reynolds number is less than 2,300. In this case the oscillatory regime occurs at values of Re < 2,300. [Pg.163]


See other pages where Specifity of radical is mentioned: [Pg.167]    [Pg.255]    [Pg.119]    [Pg.167]    [Pg.255]    [Pg.119]    [Pg.350]    [Pg.389]    [Pg.670]    [Pg.719]    [Pg.380]    [Pg.4]    [Pg.6]    [Pg.7]    [Pg.12]    [Pg.17]    [Pg.289]    [Pg.413]    [Pg.608]    [Pg.665]    [Pg.1070]    [Pg.124]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Specificity Observed in the Reactions of Oxygen-Centered Radicals with Various Monomers at

© 2024 chempedia.info