Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition diborane

There is a pronounced tendency for boron to become bonded to the less substituted car bon of the double bond Thus the hydrogen atoms of diborane add to C 2 of 1 decene and boron to C 1 This is believed to be mainly a steric effect but the regioselectivity of addition does correspond to Markovmkov s rule m the sense that hydrogen is the neg atively polarized atom m a B—H bond and boron the positively polarized one... [Pg.251]

Hydroboration-oxidation (Sections 6 11-6 13) This two step sequence achieves hydration of alkenes in a ste reospecific syn manner with a regiose lectivity opposite to Markovnikov s rule An organoborane is formed by electro philic addition of diborane to an alkene Oxidation of the organoborane inter mediate with hydrogen peroxide com pletes the process Rearrangements do not occur... [Pg.273]

Methylarsine, trifluoromethylarsine, and bis(trifluoromethyl)arsine [371-74-4] C2HAsF, are gases at room temperature all other primary and secondary arsines are liquids or solids. These compounds are extremely sensitive to oxygen, and ia some cases are spontaneously inflammable ia air (45). They readily undergo addition reactions with alkenes (51), alkynes (52), aldehydes (qv) (53), ketones (qv) (54), isocyanates (55), and a2o compounds (56). They also react with diborane (43) and a variety of other Lewis acids. Alkyl haUdes react with primary and secondary arsiaes to yield quaternary arsenic compounds (57). [Pg.336]

G in the presence of a catalytic amount of a Lewis base such as dimethylether, (GH2)20. In addition to the gas-phase pyrolysis of diborane, can be prepared by a solution-phase process developed at Union Garbide Gorp. Decaborane is a key intermediate in the preparation of many carboranes and metaHa derivatives. As of this writing, this important compound is not manufactured on a large scale in the western world and is in short supply. Prices for decaborane in 1991 were up to 10,000/kg. [Pg.235]

Addition of diborane (eq. 52) under the latter conditions renders the production of MBH essentially continuous until consumption of the metal hydride is complete because trimethyl borate is regenerated. [Pg.239]

The composition of the products of reactions involving intermediates formed by metaHation depends on whether the measured composition results from kinetic control or from thermodynamic control. Thus the addition of diborane to 2-butene initially yields tri-j iAbutylboraneTri-j -butylborane. If heated and allowed to react further, this product isomerizes about 93% to the tributylborane, the product initially obtained from 1-butene (15). Similar effects are observed during hydroformylation reactions however, interpretation is more compHcated because the relative rates of isomerization and of carbonylation of the reaction intermediate depend on temperature and on hydrogen and carbon monoxide pressures (16). [Pg.364]

Iodine azide, on the other hand, forms pure adducts with A -, A - and A -steroids by a mechanism analogous to that proposed for iodine isocyanate additions. Reduction of such adducts can lead to aziridines. However, most reducing agents effect elimination of the elements of iodine azide from the /mwj -diaxial adducts of the A - and A -olefins rather than reduction of the azide function to the iodo amine. Thus, this sequence appears to be of little value for the synthesis of A-, B- or C-ring aziridines. It is worthy to note that based on experience with nonsteroidal systems the application of electrophilic reducing agents such as diborane or lithium aluminum hydride-aluminum chloride may yet prove effective for the desired reduction. Lithium aluminum hydride accomplishes aziridine formation from the A -adducts, Le., 16 -azido-17a-iodoandrostanes (97) in a one-step reaction. The scope of this addition has been considerably enhanced by the recent... [Pg.24]

Free borane (2) exists as gaseous dimer—the diborane BaHg. In addition Lewis acid/Lewis base-complexes, as for example formed in an ethereal solvent, e.g. 4, are commercially available ... [Pg.169]

The excess diborane in the hydroboration flask is decomposed by the cautious addition of 20 ml of water. The organoborane is oxidized by the addition of 32 ml of 3 A sodium hydroxide, followed by dropwise addition of 32 ml of 30% hydrogen peroxide... [Pg.34]

A dry 5(X)-mI flask equipped with a thermometer, pressure-equalizing dropping funnel, and magnetic stirrer is flushed with nitrogen and then maintained under a static pressure of the gas. The flask is charged with 50 ml of tetrahydrofuran and 13.3 ml (0.15 mole) of cyclopentene, and then is cooled in an ice bath. Conversion to tricyclo-pentylborane is achieved by dropwise addition of 25 ml of a 1 M solution of diborane (0.15 mole of hydride see Chapter 4, Section 1 for preparation) in tetrahydrofuran. The solution is stirred for 1 hour at 25° and again cooled in an ice bath, and 25 ml of dry t-butyl alcohol is added, followed by 5.5 ml (0.05 mole) of ethyl bromoacetate. Potassium t-butoxide in /-butyl alcohol (50 ml of a 1 M solution) is added over a period of 10 minutes. There is an immediate precipitation of potassium bromide. The reaction mixture is filtered from the potassium bromide and distilled. Ethyl cyclopentylacetate, bp 101730 mm, 1.4398, is obtained in about 75% yield. Similarly, the reaction can be applied to a variety of olefins including 2-butene, cyclohexene, and norbornene. [Pg.115]

A major disadvantage of CVD (as opposed to PVD) is that many precursors are toxic and in some cases lethal even at low concentration (for instance nickel carbonyl, diborane, arsine, and phosphine). Some are also pyrophoric, such as silane, some alkyls, arsine, and phosphine. Very often the reaction is not complete and some of the precursor materials may reach the exhaust unreacted. In addition, many of the by-products of the reaction are also toxic and corrosive. This means that all these effluents must be eliminated or neutralized before they are released to the... [Pg.124]

This reaction normally takes place at 700°C and at low pressure ( < 1 Torr). Doping is accomplished by the addition of arsine, diborane, or phosphine. The addition of ozone (O3) to Reaction (6) at atmospheric pressure or sub-atmospheric pressures provides films with excellent properties. H ]... [Pg.304]

Table 4.3 provides some data on the regioselectivity of addition of diborane and several of its derivatives to representative alkenes. Table 4.3 includes data for some mono- and dialkylboranes that show even higher regioselectivity than diborane itself. These derivatives are widely used in synthesis and are frequently referred to by the shortened names shown with the structures. [Pg.338]

As is true for most reagents, there is a preference for approach of the borane from the less hindered face of the alkene. Because diborane itself is a relatively small molecule, the stereoselectivity is not high for unhindered alkenes. Table 4.4 gives some data comparing the direction of approach for three cyclic alkenes. The products in all cases result from syn addition, but the mixtures result from both the low regioselectivity and from addition to both faces of the double bond. Even 7,7-dimethylnorbornene shows only modest preference for endo addition with diborane. The selectivity is enhanced with the bulkier reagent 9-BBN. [Pg.339]

Diborane in THF reduces epoxides, but the yields are low, and other products are formed by pathways that result from the electrophilic nature of diborane.133 Better yields are obtained when BH4 is included in the reaction system, but the electrophilic nature of diborane is still evident because the dominant product results from addition of the hydride at the more-substituted carbon.134... [Pg.1110]

The diborane is generated (in situ, or separately, from NaBH4 and Et2Offi—BF3e), and probably complexes, as the monomeric BH3, with the ethereal solvent used for the reaction. BH3 is a Lewis acid and adds to the least substituted carbon atom of the alkene (Markownikov addition), overall addition is completed by hydride transfer to the adjacent, positively polarised carbon atom ... [Pg.188]

Addition of sodium hydroxide solution during work-up of a reaction mixture of oxime and diborane in THF is very exothermic, a mild explosion being noted on one occasion. [Pg.81]

Safety considerations are paramount in any boron hydride synthesis. The energy yield from the oxidations of boron hydrides is too high for any cavalier treatment of boron hydrides. Exclusion of air is the critical consideration in diborane reactions. Decaborane(14) is less reactive, generally, in a kinetic sense, but the thermodynamic potential is comparable. In addition, all volatile boron hydrides are toxic. The procedures described in the latter two preparations are within our experience non-hazardous. These procedures should be followed in every detail improvisation is not recommended. [Pg.82]

Hydroboration, the addition of a boron-hydrogen bond across an unsaturated moiety, was first discovered by H. C. Brown in 1956. Usually, the reaction does not require a catalyst, and the borane reagent, most commonly diborane (B2H6) or a borane adduct (BH3-THF), reacts rapidly at room temperature to afford, after oxidation, the /AMarkovnikov alkene hydration product. However, when the boron of the hydroborating agent is bonded to heteroatoms which lower the electron deficiency, as is the case in catecholborane (1,3,2-benzodioxaborole) 1 (Scheme 1), elevated temperatures are needed for hydroboration to occur.4 5... [Pg.839]

In addition, arylthiophene 70 was obtained by a one-pot Suzuki coupling of p-methoxyiodobenzene and 3-bromothiophene via an in situ boronate formation using one equivalent of the thermally stable diborane 69 [55], This method avoids the isolation of boronic acids and is advantageous when base-sensitive groups such as aldehyde, nitriles and esters are present. However, the cross-coupling yields are low when both aryl halides are electron-poor because of competitive homocoupling during the reaction. [Pg.243]

For the diboration reactions of alkynes catalyzed by Pt(0) complexes, the reaction mechanism involves the oxidative addition of diborane to the Pt(0) center, followed by the insertion of alkyne into the Pt-B bond and reductive... [Pg.210]

The reaction proceeds according to Eq. (17). An additional equivalent of iodine reacts at ambient temperature to produce diborane. If this reaction is performed with Et4N[B2H7] in CH2CI2 then the unstable anion H3BI, and the more stable anions H2Bl2 and HBI3 can be detected by 11 B NMR spectroscopy in small amounts. [Pg.48]


See other pages where Addition diborane is mentioned: [Pg.332]    [Pg.332]    [Pg.208]    [Pg.233]    [Pg.74]    [Pg.90]    [Pg.91]    [Pg.101]    [Pg.164]    [Pg.31]    [Pg.35]    [Pg.113]    [Pg.51]    [Pg.355]    [Pg.141]    [Pg.1012]    [Pg.91]    [Pg.288]    [Pg.1203]    [Pg.240]    [Pg.338]    [Pg.4]    [Pg.155]    [Pg.117]    [Pg.151]    [Pg.36]    [Pg.56]    [Pg.86]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Diboran

Diborane

© 2024 chempedia.info