Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,6-addition Lewis acid activation

These TMS-carbamate-mediated NCA polymerizations resemble to some extent the group-transfer polymerization (GTP) of acrylic monomers initiated by organo-silicon compounds [40]. Unlike GTPs that typically require Lewis acid activators or nucelophilic catalysts to facilitate the polymerization [41], TMS-carbamate-mediated NCA polymerizations do not appear to require any additional catalysts or activators. However, it is still unclear whether the TMS transfer proceeds through an anionic process as in GTP [41] or through a concerted process as illustrated in Scheme 14. [Pg.13]

The controlled polymerization of (meth)acrylates was achieved by anionic polymerization. However, special bulky initiators and very low temperatures (- 78 °C) must be employed in order to avoid side reactions. An alternative procedure for achieving the same results by conducting the polymerization at room temperature was proposed by Webster and Sogah [84], The technique, called group transfer polymerization, involves a catalyzed silicon-mediated sequential Michael addition of a, /f-unsaluralcd esters using silyl ketene acetals as initiators. Nucleophilic (anionic) or Lewis acid catalysts are necessary for the polymerization. Nucleophilic catalysts activate the initiator and are usually employed for the polymerization of methacrylates, whereas Lewis acids activate the monomer and are more suitable for the polymerization of acrylates [85,86]. [Pg.50]

Thus, the involvement of one of the following three possible mechanisms has been suggested (i) nucleophilic addition of the acylzirconocene chloride to the Lewis acid activated aldehyde, (ii) nucleophilic addition of the cationic species of the acylzirconocene chloride formed by an Ag(I) salt or a Lewis acid, or (iii) transmetalation of the acylzirconocene chloride with the Lewis acid and subsequent nucleophilic addition. [Pg.156]

Intramolecular addition of trialkylboranes to imines and related compounds have been reported and the main results are part of review articles [94, 95]. Addition of ethyl radicals generated from Et3B to aldimines affords the desired addition product in fair to good yield but low diaster control (Scheme 40, Eq. 40a) [96]. Similar reactions with aldoxime ethers [97], aldehyde hydrazones [97], and N-sulfonylaldimines [98] are reported. Radical addition to ketimines has been recently reported (Eq. 40b) [99]. Addition of triethylborane to 2H-azirine-3-carboxylate derivatives is reported [100]. Very recently, Somfai has extended this reaction to the addition of different alkyl radicals generated from trialkylboranes to a chiral ester of 2ff-azirine-3-carboxylate under Lewis acid activation with CuCl (Eq. 40c) [101]. [Pg.103]

In a total synthesis of (-)-laulimalide (288), Nelson et al. were able to assemble rapidly the bottom synthon of the target by adding carboalkoxyallenylstannane 286 to glycal 285 [60]. The Lewis acid activator Bu3SnOTf gave the best results, affording the anti SN2 addition product in 80% yield (Scheme 19.51). [Pg.1079]

More recently, Hartwig and coworkers reported iridium-catalyzed, asymmetric aminations of allylic alcohols in the presence of Lewis acid activators [103]. The addition of molecular sieves and Nb(OEt)5 or catalytic amounts of BPh3 activated the allylic alcohol sufficiently to allow allylic amination reactions to occur in high yield, branched-to-linear selectivity, and enantioselectivity (Scheme 29). Without the activators, only trace amounts of product were observed. [Pg.202]

In 2006, Xu and Xia et al. revealed the catalytic activity of commercially available D-camphorsulfonic acid (CS A) in the enantioselective Michael-type Friedel-Crafts addition of indoles 29 to chalcones 180 attaining moderate enantiomeric excess (75-96%, 0-37% ee) for the corresponding p-indolyl ketones 181 (Scheme 76) [95], This constitutes the first report on the stereoselectivity of o-CSA-mediated transformations. In the course of their studies, the authors discovered a synergistic effect between the ionic liquid BmimBr (l-butyl-3-methyl-l/f-imidazohum bromide) and d-CSA. For a range of indoles 29 and chalcone derivatives 180, the preformed BmimBr-CSA complex (24 mol%) gave improved asymmetric induction compared to d-CSA (5 mol%) alone, along with similar or slightly better yields of P-indolyl ketones 181 (74-96%, 13-58% ee). The authors attribute the beneficial effect of the BmimBr-D-CSA combination to the catalytic Lewis acid activation of Brpnsted acids (LBA). Notably, the direct addition of BmimBr to the reaction mixture of indole, chalcone, d-CSA in acetonitrile did not influence the catalytic efficiency. [Pg.453]

The role of titanium salt is to activate the carbonyl compounds as Lewis acid. As described above, bis(iodozincio)methane (3) is nucleophilic enough to attack the carbonyl group of aldehydes or ce-alkoxyketones. In the reaction with simple ketones or esters, however, the addition of titanium salt is necessary to facilitate the nucleophilic attack. Instead of this Lewis acid activator, simple heating may induce the nucleophilic attack. Treatment of 2-dodecanone with 3 without titanium salt at higher temperature, however, does not improve the yield of alkene (Scheme 13). The reason for the low reactivity of 3 at higher temperature comes from the structural change of 3 into the polymeric methylene zinc 4 through the Schlenk equilibrium shown in equation 740. [Pg.655]

In aromatic systems, the Lewis acids which activate via coordination are also capable of activating the aromatic system by the formation of a and ir complexes. There are a sufficient number of examples available to indicate that the activation via the latter processes is the more important of these, where all are present. Olivier (52) showed in 1913 that the kinetic behavior of such reactions consists of two portions. When the catalyst, say aluminum chloride, is present in less than the amount required to complex all the functional groups, the reaction is relatively slow and the catalytic activity is due to the small amount of Lewis acid resulting from the dissociation of the complex. As soon as all the functional groups are coordinated, any additional Lewis acid is found to accelerate the rate enormously. In these electrophilic substitutions it seems highly probable that the the activation involves the pi electron system of the benzene ring. Olivier studied the reaction sequence ... [Pg.124]

The proposed reaction course involves the initial Michael-type addition of the olefin to the Lewis acid activated unsaturated carbonyl compound, forming regioselectively a selenocarbenium ion (i). Subsequent 1,2-silyl migration (//), Se-bridging Hi) and 1,3-ring... [Pg.514]

Indium halides have emerged as potential Lewis acids imparting high regio- and chemoselectivity in various chemical transformations [41-43]. The reactions can be carried out under mild conditions either in aqueous or in non-aqueous media. Yadav et al. demonstrated a superior catalytic Lewis acid activity of InCl3 in the conjugative addition of indole (2) and 2-methylindole (19) (Scheme 7) [44],... [Pg.7]

In addition to structure control, metal ions can act as reactive centers of proteins or enzymes. The metals can not only bind reaction partners, their special reactivity can induce chemical reaction of the substrate. Very often different redox states of the metal ions play a crucial role in the specific chemistry of the metal. Non-redox-active enzymes, e.g. some hydrolytic enzymes, often react as a result of their Lewis-acid activity [2], Binding of substrates is, however, important not only for their chemical modification but also for their transport. Oxygen transport by hemoglobin is an important example of this [3]. [Pg.46]


See other pages where 1,6-addition Lewis acid activation is mentioned: [Pg.148]    [Pg.312]    [Pg.126]    [Pg.225]    [Pg.483]    [Pg.285]    [Pg.69]    [Pg.25]    [Pg.298]    [Pg.83]    [Pg.508]    [Pg.437]    [Pg.76]    [Pg.215]    [Pg.232]    [Pg.234]    [Pg.117]    [Pg.145]    [Pg.49]    [Pg.52]    [Pg.225]    [Pg.398]    [Pg.281]    [Pg.283]    [Pg.225]    [Pg.120]    [Pg.145]    [Pg.142]    [Pg.245]    [Pg.142]    [Pg.157]    [Pg.16]    [Pg.595]    [Pg.637]    [Pg.245]    [Pg.1340]   
See also in sourсe #XX -- [ Pg.190 , Pg.199 , Pg.332 ]

See also in sourсe #XX -- [ Pg.190 , Pg.199 , Pg.332 ]




SEARCH



Lewis acid addition

Lewis acid-activators

Lewis acids activity

Lewis additive

© 2024 chempedia.info