Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activity Coefficient Prediction Methods

According to the phase rule, a three-component, two-phase system has three degrees of freedom. Thus, by specifying the temperature, pressure, and concentration of one component in one phase, the state of the system is defined. The component concentration in one phase defines one point on the equilibrium curve, and this point marks one end of a tie line. The other end is determined thermodynamically either from experimental data or on the basis of liquid activity coefficient predictions methods. [Pg.361]

It is clear from this figure that, for this simple system, the UNIFAC predictions are good— much better than the regular solution predictions of Fig. 9 6-l. Although the UNIFAC predictions for all systems are not always as good as for the benzene-2,2,4-trimethyl pentane system, UNIFAC with its recent improvements is the best activity coefficient prediction method currently available. ... [Pg.451]

A rigorous test of multicomponent solution activity coefficient prediction methods is the calculation of the mutual solubilities of salts and the calculation of salt solubilities in aqueous electrolyte solutions. The salt solubilities are affected by the solution composition. In order to calculate the saturation molalities, the activity coefficients must be adequately predicted. [Pg.231]

This test of activity coefficient prediction methods is also recommended due to the wealth of good experimental solubility data available. [Pg.231]

These models are semiempirical and are based on the concept that intermolecular forces will cause nonrandom arrangement of molecules in the mixture. The models account for the arrangement of molecules of different sizes and the preferred orientation of molecules. In each case, the models are fitted to experimental binary vapor-liquid equilibrium data. This gives binary interaction parameters that can be used to predict multicomponent vapor-liquid equilibrium. In the case of the UNIQUAC equation, if experimentally determined vapor-liquid equilibrium data are not available, the Universal Quasi-chemical Functional Group Activity Coefficients (UNIFAC) method can be used to estimate UNIQUAC parameters from the molecular structures of the components in the mixture3. [Pg.62]

The goal of this research was to improve activity coefficient prediction, and hence, equilibrium calculations in flue gas desulfurization (FGD) processes of both low and high ionic strength. A data base and methods were developed to use the local composition model by Chen et al. (MIT/Aspen Technology). The model was used to predict solubilities in various multicomponent systems for gypsum, magnesium sulfite, calcium sulfite, calcium carbonate, and magnesium carbonate SCU vapor pressure over sulfite/ bisulfite solutions and, C02 vapor pressure over car-bonate/bicarbonate solutions. [Pg.228]

The LCM is a semi-theoretical model with a minimum number of adjustable parameters and is based on the Non-Random Two Liquid (NRTL) model for nonelectrolytes (20). The LCM does not have the inherent drawbacks of virial-expansion type equations as the modified Pitzer, and it proved to be more accurate than the Bromley method. Some advantages of the LCM are that the binary parameters are well defined, have weak temperature dependence, and can be regressed from various thermodynamic data sources. Additionally, the LCM does not require ion-pair equilibria to correct for activity coefficient prediction at higher ionic strengths. Thus, the LCM avoids defining, and ultimately solving, ion-pair activity coefficients and equilibrium expressions necessary in the Davies technique. Overall, the LCM appears to be the most suitable activity coefficient technique for aqueous solutions used in FGD hence, a data base and methods to use the LCM were developed. [Pg.230]

Park, J.H., Carr, P.W. Predictive ability of the MOSCED and UNIFAC activity coefficient estimation methods. Anal. Chem., 1987, 59 2596-2602. [Pg.123]

During the course of preparing this Handbook the available prediction models were evaluated for their ability to accurately predict weight fraction activity coefficients. The methods included were the UNIFAC free volume model (Oishi and Prausnitz, 1978), the Chen et al. (1990) equation of state, and the High-Danner (1990) equation of state. [Pg.32]

Perhaps the most important term in Eq. (5.2-3) is the liquid-phase activity coefficient, and methods for its prediction have been developed in maiiy forms and by many workers. For binary systems the Van Laar (Eq. (1.4-18)], Wilson [Eq. (1.4-23)], NRTL (Eq. (1.4-27)], and UmQUAC [Eq. (t.4-3ti)] relationships are useful for predicting liqnid-iffiase nonidealities, but they require some experimental data. When no dim are available, and an approximate nonideality correction will suffice, the UNIFAC approach (Eq. (1.4-31)], which utilizes functional group contributions, may be used. For special cases involving regular solutions (no excess entropy of mixing), the Scatchard-Hildebrand method provides liquid-phase activity coefficients based on easily obtained pure-component properties. [Pg.232]

Activity coefficients predicted by the D-H equation decrease monotonically with solute concentration. Measured activity coefficients typically decrease at first, but then increase at higher concentrations. This indicates that the simple coulombic model used by the D-H theory is inadequate in more concentrated solutions, which is not surprising. There have been many theoretical attempts to model the additional interactions that occur at high concentrations. Detailed summaries are given by Friedman (1962) and Helgeson et al. (1981), and a brief summary is in Nordstrom and Munoz (1994). Two of these are the B method and ion hydration method, but they are rather similar in effect, in that they add a more or less linear positive term to the right side of Equation (15.22). [Pg.442]

More reliable phase behaviour predictions for binary ionic liquid systems with carbon dioxide or organics come from group-contribution equations of state, such as the universal functional activity coefficient (UNIFAC) method, the group-contribution nonrandom lattice ffuid equation of... [Pg.381]

If the mutual solubilities of the solvents A and B are small, and the systems are dilute in C, the ratio ni can be estimated from the activity coefficients at infinite dilution. The infinite dilution activity coefficients of many organic systems have been correlated in terms of stmctural contributions (24), a method recommended by others (5). In the more general case of nondilute systems where there is significant mutual solubiUty between the two solvents, regular solution theory must be appHed. Several methods of correlation and prediction have been reviewed (23). The universal quasichemical (UNIQUAC) equation has been recommended (25), which uses binary parameters to predict multicomponent equihbria (see Eengineering, chemical DATA correlation). [Pg.61]

UNIFAC andASOG Development. Pertinent equations of the UNIQUAC functional-group activity coefficient (UNIFAC) model for prediction of activity coefficients including example calculations are available (162). Much of the background of UNIFAC involves another QSAR technique, the analytical solution of groups (ASOG) method (163). [Pg.249]

A sampling of appHcations of Kamlet-Taft LSERs include the following. (/) The Solvatochromic Parameters for Activity Coefficient Estimation (SPACE) method for infinite dilution activity coefficients where improved predictions over UNIEAC for a database of 1879 critically evaluated experimental data points has been claimed (263). (2) Observation of inverse linear relationship between log 1-octanol—water partition coefficient and Hquid... [Pg.254]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

There are many types of phase diagrams in addition to the two cases presented here these are summarized in detail by Zief and Wilcox (op. cit., p. 21). Solid-liquid phase equilibria must be determined experimentally for most binaiy and multicomponent systems. Predictive methods are based mostly on ideal phase behavior and have limited accuracy near eutectics. A predic tive technique based on extracting liquid-phase activity coefficients from vapor-liquid equilib-... [Pg.1990]

Pieratti et ol. (1955) have developed correlations for the prediction of the activity coefficients at infinite dilution for systems containing water, hydrocarbons and some other organic compounds. Their method, and the data needed for predictions, is described by Treybal (1963) and Reid et al. (1987). [Pg.347]

For systems that are only partially miscible in the liquid state, the activity coefficient in the homogeneous region can be calculated from experimental values of the mutual solubility limits. The methods used are described by Reid et al. (1987), Treybal (1963), Brian (1965) and Null (1970). Treybal (1963) has shown that the Van-Laar equation should be used for predicting activity coefficients from mutual solubility limits. [Pg.347]

A model is needed to calculate liquid-liquid equilibrium for the activity coefficient from Equation 4.67. Both the NRTL and UNIQUAC equations can be used to predict liquid-liquid equilibrium. Note that the Wilson equation is not applicable to liquid-liquid equilibrium and, therefore, also not applicable to vapor-liquid-liquid equilibrium. Parameters from the NRTL and UNIQUAC equations can be correlated from vapor-liquid equilibrium data6 or liquid-liquid equilibrium data9,10. The UNIFAC method can be used to predict liquid-liquid equilibrium from the molecular structures of the components in the mixture3. [Pg.71]

Although the methods developed here can be used to predict liquid-liquid equilibrium, the predictions will only be as good as the coefficients used in the activity coefficient model. Such predictions can be critical when designing liquid-liquid separation systems. When predicting liquid-liquid equilibrium, it is always better to use coefficients correlated from liquid-liquid equilibrium data, rather than coefficients based on the correlation of vapor-liquid equilibrium data. Equally well, when predicting vapor-liquid equilibrium, it is always better to use coefficients correlated to vapor-liquid equilibrium data, rather than coefficients based on the correlation of liquid-liquid equilibrium data. Also, when calculating liquid-liquid equilibrium with multicomponent systems, it is better to use multicomponent experimental data, rather than binary data. [Pg.72]


See other pages where Activity Coefficient Prediction Methods is mentioned: [Pg.1688]    [Pg.1719]    [Pg.33]    [Pg.449]    [Pg.1682]    [Pg.1713]    [Pg.1688]    [Pg.1719]    [Pg.33]    [Pg.449]    [Pg.1682]    [Pg.1713]    [Pg.228]    [Pg.230]    [Pg.231]    [Pg.80]    [Pg.451]    [Pg.211]    [Pg.285]    [Pg.238]    [Pg.238]    [Pg.252]    [Pg.327]    [Pg.536]    [Pg.1313]    [Pg.1318]    [Pg.351]    [Pg.109]    [Pg.347]    [Pg.17]   


SEARCH



Activation methods

Activation prediction

Activity coefficient method

Activity coefficients predictive methods

Activity coefficients predictive methods

Activity coefficients, prediction

Coefficient Method

© 2024 chempedia.info