Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated carbon formation

A number of simple and inexpensive materials catalytically promote the cobalt-carbonylation (Reaction 2) in aqueous solution. These include ion-exchange resins, zeolites, or special types of activated carbon. Formation of the active catalyst in a separate reactor is thus economically feasible. The mechanism of this catalysis has not yet been elucidated and seems to differ for each promoter mentioned. After an induction period during which the cobalt fed to the reactor is partially retained by the promoter, fully active materials have absorbed cobalt carbonyl anion Co(CO)4 (ion exchange resins), Co2+ cation (zeolites), or a mixture of Co2+, cobalt carbonyl hydride, and cluster-type cobalt carbonyls (activated carbon). This can be shown by analytical studies (extraction, titration, and IR studies) of active material withdrawn from the reactor. [Pg.30]

There are also reports of thermally induced dehalofluorinations over iron (formation of 8)198 or activated carbon (formation of 9).199... [Pg.377]

The initial wall activity diminished as less active carbon builds upon the walls decreasing available active sites. The initial activity of nickel was clearly lower than that of low carbon steel, but higher than that of stainless steel. The results are in general agreement with the conclusions of Tamai, et al. (1968) and Buell and Weber (1950). The former indicated that nickel had a lower "affinity to olefins than iron, while the latter concluded that the nickel content in austenitic steel alloys is primarily responsible for their activity (carbon formation) when compared to the less active chrome steel alloys. The carbon-conditioned nickel walls were less active than those of low carbon steel reactor probably because the catalytic activity of the base metal did not penetrate through the carbon layer as effectively as it did with low carbon steel. [Pg.230]

Quantitative Analysis of All llithium Initiator Solutions. Solutions of alkyUithium compounds frequentiy show turbidity associated with the formation of lithium alkoxides by oxidation reactions or lithium hydroxide by reaction with moisture. Although these species contribute to the total basicity of the solution as determined by simple acid titration, they do not react with allyhc and henzylic chlorides or ethylene dibromide rapidly in ether solvents. This difference is the basis for the double titration method of determining the amount of active carbon-bound lithium reagent in a given sample (55,56). Thus the amount of carbon-bound lithium is calculated from the difference between the total amount of base determined by acid titration and the amount of base remaining after the solution reacts with either benzyl chloride, allyl chloride, or ethylene dibromide. [Pg.239]

Acid Chloride Formation. Monoacid chlorides of maleic and fumaric acid are not known. Treatment of maleic anhydride or maleic acid with various reagents such as phosgene [75-44-5] (qv), phthaloyl chloride [88-95-9] phosphoms pentachloride [10026-13-8] or thionyl chloride [7719-09-7] gives 5,5-dichloro-2(5JT)furanone [133565-92-1] (4) (26). Similar conditions convert fumaric acid to fumaryl chloride [627-63-4] (5) (26,27). NoncycHc maleyl chloride [22542-53-6] (6) forms in 11% yield at 220°C in the reaction of one mole of maleic anhydride with six moles of carbon tetrachloride [56-23-5] over an activated carbon [7440-44-4] catalyst (28). [Pg.449]

The sulfur then reacts to form the polysulfide according to equation 12. The key is the use of a catalyst to promote the formation of elemental sulfur. Commercial systems are based on the use of air with an activated carbon catalyst (41). The need for additional sulfur is eliminated, but the sulfur level is... [Pg.270]

Many attempts have been made to reduce the ammoniacal and sulfurous odor of the standard thioglycolate formulations. As the cosmetics market is very sensitive to the presence of impurities, odor, and color, various treatments of purification have been claimed to improve the olfactory properties of thioglycolic acid and its salts, such as distillation (33), stabilization against the formation of H2S using active ingredients (34), extraction with solvents (35), active carbon (36), and chelate resin treatments (37). [Pg.5]

Coin and Button Cell Commercial Systems. Initial commercialization of rechargeable lithium technology has been through the introduction of coin or button cells. The eadiest of these systems was the Li—C system commercialized by Matsushita Electric Industries (MEI) in 1985 (26,27). The negative electrode consists of a lithium alloy and the positive electrode consists of activated carbon [7440-44-0J, carbon black, and binder. The discharge curve is not flat, but rather slopes from about 3 V to 1.5 V in a manner similar to a capacitor. Use of lithium alloy circumvents problems with cycle life, dendrite formation, and safety. However, the system suffers from generally low energy density. [Pg.583]

The mechanistic pathway" " can be divided into three steps 1. formation of the activating agent from triphenylphosphine and diethyl azodicarboxylate (DEAD) or diisopropyl azodicarboxylate (DIAD) 2. activation of the substrate alcohol 1 3. a bimolecular nucleophilic substitution (Sn2) at the activated carbon center. [Pg.204]

Two other components, methanol and benzene, were included in this study. Methanol is important in processes using Rectisol Systems for C02 removal prior to methanation. Benzene was considered in order to determine the effect of aromatics on catalyst activity and potential carbon formation. [Pg.62]

Activated carbon can be used to preclude the formation of pink water . Methods of reactivating the carbon are still under investigation... [Pg.269]

Activation energy values for the recombination of the products of carbonate decompositions are generally low and so it is expected that values of E will be close to the dissociation enthalpy. Such correlations are not always readily discerned, however, since there is ambiguity in what is to be regarded as a mole of activated complex . If the reaction is shown experimentally to be readily reversible, the assumption may be made that Et = ntAH and the value of nt may be an indication of the number of reactant molecules participating in activated complex formation. Kinetic parameters for dissociation reactions of a number of carbonates have been shown to be consistent with the predictions of the Polanyi—Wigner equation [eqn. (19)]. [Pg.169]

The so-called bioactive ceramics have been attractive because they spontaneously bond to living bone, however, they are much more brittle and much less flexible than natural bone. Previous studies reported that the essential condition for ceramics to show bioactivity is formation of a biologically active carbonate-containing apatite on their surfaces after exposure to the body fluid [337]. Calciiun sulfate was also used [338]. [Pg.197]

A related unprecedented double insertion of electron-deficient alkynes has also been reported in the reactions of the linear Pt2Pd heterotrimetallic complex 64 with 65 (RO2CCSCR) (Scheme 24) [95,96]. A series of unsymmetri-cal A-frame clusters 68 has thus been obtained in which a first insertion of the alkyne takes place site-selectively into the Pt-Pd bond vs the Pt-Pt bond (66). After a zwitter-ionic polar activation of the resulting inserted alkene (67), a subsequent reaction with the phosphine unit of the dpmp allows one to obtain the products 68 via the nucleophilic migration of the terminal P atom from the Pd center to the CH terminal carbon (formation of the P-C bond). [Pg.59]


See other pages where Activated carbon formation is mentioned: [Pg.190]    [Pg.46]    [Pg.190]    [Pg.46]    [Pg.77]    [Pg.114]    [Pg.280]    [Pg.284]    [Pg.284]    [Pg.528]    [Pg.313]    [Pg.137]    [Pg.280]    [Pg.530]    [Pg.543]    [Pg.153]    [Pg.30]    [Pg.534]    [Pg.1444]    [Pg.131]    [Pg.136]    [Pg.464]    [Pg.288]    [Pg.320]    [Pg.54]    [Pg.485]    [Pg.616]    [Pg.117]    [Pg.853]    [Pg.260]    [Pg.440]    [Pg.69]    [Pg.178]    [Pg.156]    [Pg.192]    [Pg.461]    [Pg.617]    [Pg.307]   
See also in sourсe #XX -- [ Pg.4 , Pg.434 ]




SEARCH



Formate, active

Formate, active activation

© 2024 chempedia.info