Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activated alumina surface areas

The zinc oxide component of the catalyst serves to maintain the activity and surface area of the copper sites, and additionally helps to reduce light ends by-product formation. Selectivity is better than 99%, with typical impurities being ethers, esters, aldehydes, ketones, higher alcohols, and waxes. The alumina portion of the catalyst primarily serves as a support. [Pg.275]

There is little data available to quantify these factors. The loss of catalyst surface area with high temperatures is well-known (136). One hundred hours of dry heat at 900°C are usually sufficient to reduce alumina surface area from 120 to 40 m2/g. Platinum crystallites can grow from 30 A to 600 A in diameter, and metal surface area declines from 20 m2/g to 1 m2/g. Crystal growth and microstructure changes are thermodynamically favored (137). Alumina can react with copper oxide and nickel oxide to form aluminates, with great loss of surface area and catalytic activity. The loss of metals by carbonyl formation and the loss of ruthenium by oxide formation have been mentioned before. [Pg.111]

Ruthenium catalysts, supported on a commercial alumina (surface area 155 m have been prepared using two different precursors RUCI3 and Ru(acac)3 [172,173]. Ultrasound is used during the reduction step performed with hydrazine or formaldehyde at 70 °C. The ultrasonic power (30 W cm ) was chosen to minimise the destructive effects on the support (loss of morphological structure, change of phase). Palladium catalysts have been supported both on alumina and on active carbon [174,175]. Tab. 3.6 lists the dispersion data provided by hydrogen chemisorption measurements of a series of Pd catalysts supported on alumina. is the ratio between the surface atoms accessible to the chemisorbed probe gas (Hj) and the total number of catalytic atoms on the support. An increase in the dispersion value is observed in all the sonicated samples but the effect is more pronounced for low metal loading. [Pg.125]

Fig. 26. Activity versus surface area normalized time, for alumina-supported catalysts at 525 K, 1 atm (10 ppm H2S, H2/CO = 99) (Ref. 194). Fig. 26. Activity versus surface area normalized time, for alumina-supported catalysts at 525 K, 1 atm (10 ppm H2S, H2/CO = 99) (Ref. 194).
Modifeation of alumina surfaee to enhance selective adsorption of particular compounds is an area of rapid development. The activated alumina surface contains a range of surface sites differing in their chemical structure and reactivity. Modification of the surface to contain a greater proportions of surface fuctionalities that enhance the desired separtion or reaction which reducing undesired sites, is a powerful tool in the design of selective adsorption process. In the present study the modification of alumina surface is effected by treatment with acid and base to enhance the adsorption of an antioxidant (tert-butyl catechol) from aromatic hydrocarbon (styrene). [Pg.614]

Not only does the presence of alumina decrease the hydrogenation activity by reducing the active metal surface area, but also it possesses strong hydration-dehydration tendencies which may promote undesirable side reactions. The deposition of alumina can be limited by strict control during the activation of the alloy. The deleterious activity of the residue of alumina which invariably remains can be reduced by treatment of the catalyst with baryta solution. [Pg.436]

Desiccants. A soHd desiccant is simply an adsorbent which has a high affinity and capacity for adsorption of moisture so that it can be used for selective adsorption of moisture from a gas (or Hquid) stream. The main requkements for an efficient desiccant are therefore a highly polar surface and a high specific area (small pores). The most widely used desiccants (qv) are siHca gel, activated alumina, and the aluminum rich zeoHtes (4A or 13X). The equiHbrium adsorption isotherms for moisture on these materials have characteristically different shapes (Fig. 3), making them suitable for different appHcations. [Pg.254]

Traditional adsorbents such as sihca [7631 -86-9] Si02 activated alumina [1318-23-6] AI2O2 and activated carbon [7440-44-0], C, exhibit large surface areas and micropore volumes. The surface chemical properties of these adsorbents make them potentially useful for separations by molecular class. However, the micropore size distribution is fairly broad for these materials (45). This characteristic makes them unsuitable for use in separations in which steric hindrance can potentially be exploited (see Aluminum compounds, aluminum oxide (ALUMINA) Silicon compounds, synthetic inorganic silicates). [Pg.292]

Benzene-Based Catalyst Technology. The catalyst used for the conversion of ben2ene to maleic anhydride consists of supported vanadium oxide [11099-11-9]. The support is an inert oxide such as kieselguhr, alumina [1344-28-17, or sUica, and is of low surface area (142). Supports with higher surface area adversely affect conversion of benzene to maleic anhydride. The conversion of benzene to maleic anhydride is a less complex oxidation than the conversion of butane, so higher catalyst selectivities are obtained. The vanadium oxide on the surface of the support is often modified with molybdenum oxides. There is approximately 70% vanadium oxide and 30% molybdenum oxide [11098-99-0] in the active phase for these fixed-bed catalysts (143). The molybdenum oxide is thought to form either a soUd solution or compound oxide with the vanadium oxide and result in a more active catalyst (142). [Pg.455]

The large majority of activated alumina products are derived from activation of aluminum hydroxide, rehydrated alumina, or pseudoboehmite gel. Other commerical methods to produce specialty activated aluminas are roasting of aluminum chloride [7446-70-0], AIQ calcination of precursors such as ammonium alum [7784-25-0], AlH2NOgS2. Processing is tailored to optimize one or more of the product properties such as surface area, purity, pore size distribution, particle size, shape, or strength. [Pg.155]

Rehydration Bonded Alumina. Rehydration bonded aluminas are agglomerates of activated alumina, which derive their strength from the rehydration bonding mechanism. Because more processing steps are involved in the manufacture, they are generally more expensive than activated aluminum hydroxides. On the other hand, rehydration bonded aluminas can be produced in a wider range of particle shape, surface area, and pore size distribution. [Pg.155]

Hydrolysis of aluminum alkoxides is also used commercially to produce precursor gels. This approach avoids the introduction of undesirable anions or cations so that the need for extensive washing is reduced. Although gels having surface area over 800 m /g can be produced by this approach, the commercial products are mosdy pseudoboehmite powders in the 200 —300 m /g range (28). The forming processes already described are used to convert these powders into activated alumina shapes. [Pg.156]

The gel-based products have traditionally been the most expensive and highest performance activated alumina products. They have very good mechanical properties, high surface area, and their purity and ganima-aluniina stmcture make them somewhat resistant to thermal degradation. On the other hand, they are the most difficult to manufacture and disposal of by-product salts can present an environmental problem. [Pg.156]

High Surface Sodium. Liquid sodium readily wets many soHd surfaces. This property may be used to provide a highly reactive form of sodium without contamination by hydrocarbons. Powdered soHds having a high surface area per unit volume, eg, completely dehydrated activated alumina powder, provide a suitable base for high surface sodium. Other powders, eg, sodium chloride, hydride, monoxide, or carbonate, can also be used. [Pg.162]

A few industrial catalysts have simple compositions, but the typical catalyst is a complex composite made up of several components, illustrated schematically in Figure 9 by a catalyst for ethylene oxidation. Often it consists largely of a porous support or carrier, with the catalyticaHy active components dispersed on the support surface. For example, petroleum refining catalysts used for reforming of naphtha have about 1 wt% Pt and Re on the surface of a transition alumina such as y-Al203 that has a surface area of several hundred square meters per gram. The expensive metal is dispersed as minute particles or clusters so that a large fraction of the atoms are exposed at the surface and accessible to reactants (see Catalysts, supported). [Pg.170]

The industrial catalysts for ammonia synthesis consist of far more than the catalyticaHy active iron (74). There are textural promoters, alumina and calcium oxide, that minimise sintering of the iron and a chemical promoter, potassium (about 1 wt % of the catalyst), and possibly present as K2O the potassium is beheved to be present on the iron surface and to donate electrons to the iron, increasing its activity for the dissociative adsorption of N2. The primary iron particles are about 30 nm in size, and the surface area is about 15 m /g. These catalysts last for years. [Pg.177]

Some catalyst supports rely on a relatively low surface area stmctural member coated with a layer of a higher surface area support material. The automotive catalytic converter monolith support is an example of this technology. In this appHcation, a central core of multichanneled, low surface area, extmded ceramic about 10 cm in diameter is coated with high surface area partially hydrated alumina onto which are deposited small amounts of precious metals as the active catalytic species. [Pg.194]

When catalysts are used in a highly exothermic reaction, an active phase may be diluted with an inert material to help dissipate heat and moderate the reaction. This technique is practiced in the commercial oxychlorination of ethylene to dichloroethane, where an alumina-supported copper haUde catalyst is mixed with a low surface area inert diluent. [Pg.195]

To add surface area, the supports are uniformly coated with a slurry of gamma-alumina and recalcined under moderate conditions. The wash coat acts to accept the active metals, typically low levels of platinum and palladium, in a conventional impregnation process. In the United States in passenger car apphcations the spherical catalyst is used almost exclusively, and methods have been developed to replace the catalyst without removing the converter shell when vehicle inspection reveals that emission standards are not met. [Pg.198]

The oxychlorination reaction is very exothermic and the catalyst is very active, which makes it necessary to mix the catalyst with an inert diluent to avoid overheating in a fixed-bed reactor. A low surface area, spherically- or ring-shaped alumina or chemical porcelain body can be used as a diluent with the ring-shaped catalyst. The density of the inert material should be similar to the catalyst to avoid segregation during loading, and the size should be slightly different to allow separation of the inert material from the spent catalyst. [Pg.203]

In addition to platinum and related metals, the principal active component ia the multiflmctioaal systems is cerium oxide. Each catalytic coaverter coataias 50—100 g of finely divided ceria dispersed within the washcoat. Elucidatioa of the detailed behavior of cerium is difficult and compHcated by the presence of other additives, eg, lanthanum oxide, that perform related functions. Ceria acts as a stabilizer for the high surface area alumina, as a promoter of the water gas shift reaction, as an oxygen storage component, and as an enhancer of the NO reduction capability of rhodium. [Pg.370]

Catalytic Pyrolysis. This should not be confused with fluid catalytic cracking, which is used in petroleum refining (see Catalysts, regeneration). Catalytic pyrolysis is aimed at producing primarily ethylene. There are many patents and research articles covering the last 20 years (84—89). Catalytic research until 1988 has been summarized (86). Almost all catalysts produce higher amounts of CO and CO2 than normally obtained with conventional pyrolysis. This indicates that the water gas reaction is also very active with these catalysts, and usually this leads to some deterioration of the olefin yield. Significant amounts of coke have been found in these catalysts, and thus there is a further reduction in olefin yield with on-stream time. Most of these catalysts are based on low surface area alumina catalysts (86). A notable exception is the catalyst developed in the former USSR (89). This catalyst primarily contains vanadium as the active material on pumice (89), and is claimed to produce low levels of carbon oxides. [Pg.443]

Alumina is used because it is relatively inert and provides the high surface area needed to efftciendy disperse the expensive active catalytic components. However, no one alumina phase possesses the thermal, physical, and chemical properties ideal for the perfect activated coating layer. A great deal of research has been carried out in search of modifications that can make one or more of the alumina crystalline phases more suitable. Eor instance, components such as ceria, baria, lanthana, or 2irconia are added to enhance the thermal characteristics of the alumina. Eigure 6 shows the thermal performance of an alumina-activated coating material. [Pg.485]

An unstabilized high surface area alumina siaters severely upon exposure to temperatures over 900°C. Sintering is a process by which the small internal pores ia the particles coalesce and lose large fractions of the total surface area. This process is to be avoided because it occludes some of the precious metal catalyst sites. The network of small pores and passages for gas transfer collapses and restricts free gas exchange iato and out of the activated catalyst layer resulting ia thermal deactivation of the catalyst. [Pg.486]

Metal Oxide - Since metals are less electrophilic than silicon, metal oxide adsorbents show even stronger selectivity for polar molecules than do siliceous materials. The most commonly used metal oxide adsorbent is activated alumina, used primarily for gas drying. Occasionally, metal oxides find applications in specific chemisorption systems. For example, several processes are under development utilizing lime or limestone for removal of sulfur oxides from flue gases. Activated aluminas have surface areas in the range of 200 to 1,000 ftVft Average pore diameters range from about 30 to 80 A. [Pg.468]

Liquid-solid chromatography (LSC). This process, often termed adsorption chromatography, is based on interactions between the solute and fixed active sites on a finely divided solid adsorbent used as the stationary phase. The adsorbent, which may be packed in a column or spread on a plate, is generally a high surface area, active solid such as alumina, charcoal or silica gel, the last... [Pg.216]


See other pages where Activated alumina surface areas is mentioned: [Pg.155]    [Pg.183]    [Pg.26]    [Pg.360]    [Pg.155]    [Pg.114]    [Pg.242]    [Pg.855]    [Pg.97]    [Pg.2702]    [Pg.252]    [Pg.172]    [Pg.154]    [Pg.154]    [Pg.518]    [Pg.173]    [Pg.458]    [Pg.503]    [Pg.503]    [Pg.128]    [Pg.129]    [Pg.286]    [Pg.288]    [Pg.293]    [Pg.79]   
See also in sourсe #XX -- [ Pg.146 , Pg.148 ]




SEARCH



Activated alumina

Activation aluminas

Active aluminas

Active area

Active surface area

Alumina activity

Alumina surfaces

Aluminas surface area

Surface area activity

© 2024 chempedia.info