Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile treatment

According to SEM analysis, the raw kenaf fillers were clearly distinguishable due to the weak interfacial bonding between the filler and the matrix. On the other hand. [Pg.317]

For raw kenaf composites, the tensile strength decreased with an increase in fiber loading. As the filler load increased, the weak interfacial area between the filler and the matrix increased, which in turn decreased the tensile strength. In order to increase mechanical properties of the composites, kenaf was chemically treated using acrylonitrile. Due to the elimination of most of the hydroxyl groups in the treated kenaf, the interfacial bonding between the kenaf filler and the PP matrix increased in the resultant composites. This in turn increased the tensile strength of the 25% fiber loaded treated composites compared to PP matrix itself. [Pg.318]


Taking into account a variety of toxic end-points of chronic acrylonitrile treatment in Fischer 344 rats, Salsburg (1990) calculated a lowest observable effect level of 3 ppm (mg/L) in drinking water, while 1 ppm acrylonitrile was estimated to be a no mean effect level . [Pg.79]

Skin is absorbed redness see also Inhalation . gloves, protective clothing. remove contaminated clothli>g. flush skin with water or shower, refer to a doctorfor special antl-acrylonitrile treatment. [Pg.566]

A widely used protecting agent is 2-cyanoethanol (- 3-hydroxypropanonitrile, hy-dracrylonitrile), which is condensed with phosphates with the aid of DCC. The 2-cyanoethyl (Ce) group is quantitatively removed as acrylonitrile by treatment with weak bases (H.G. Kho-rana, 1965). [Pg.166]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Homogeneous GopolymeriZation. Nearly all acryhc fibers are made from acrylonitrile copolymers containing one or more additional monomers that modify the properties of the fiber. Thus copolymerization kinetics is a key technical area in the acryhc fiber industry. When carried out in a homogeneous solution, the copolymerization of acrylonitrile foUows the normal kinetic rate laws of copolymerization. Comprehensive treatments of this general subject have been pubhshed (35—39). The more specific subject of acrylonitrile copolymerization has been reviewed (40). The general subject of the reactivity of polymer radicals has been treated in depth (41). [Pg.278]

Other reactions that show preference for the acidic N-3—H group include Mannich aminomethylation by treatment with formaldehyde and an amine (38) to yield compound (8), reaction with ethyleneimine (39) to give (9), and Michael-type additions (40) such as the one with acrylonitrile to give (10) ... [Pg.251]

MAA and MMA may also be prepared via the ammoxidation of isobutylene to give meth acrylonitrile as the key intermediate. A mixture of isobutjiene, ammonia, and air are passed over a complex mixed metal oxide catalyst at elevated temperatures to give a 70—80% yield of methacrylonitrile. Suitable catalysts often include mixtures of molybdenum, bismuth, iron, and antimony, in addition to a noble metal (131—133). The meth acrylonitrile formed may then be hydrolyzed to methacrjiamide by treatment with one equivalent of sulfuric acid. The methacrjiamide can be esterified to MMA or hydrolyzed to MAA under conditions similar to those employed in the ACH process. The relatively modest yields obtainable in the ammoxidation reaction and the generation of a considerable acid waste stream combine to make this process economically less desirable than the ACH or C-4 oxidation to methacrolein processes. [Pg.253]

Nitrones or aci-nitro esters react with alkenes to give in some cases A/-substituted isoxazolidines and in others 2-isoxazolines. When the intermediate isoxazolidines were observed, a number of procedures transformed them into the 2-isoxazolines. Acrylonitrile and phenyl rzcf-nitrone esters produced an A/-methoxyisoxazolidine. Treatment with acid generated a 2-isoxazole while treatment with base generated an oxazine (Scheme 118) (68ZOR236). When an ethoxycarbonyl nitrone ester was reacted with alkenes, no intermediate isoxazolidine was observed, only A -isoxazolines. Other aci-mtro methyl esters used are shown in Scheme 118 and these generate IV-methoxyisoxazolidines or A -isoxazolines which can be further transformed (72MI41605). [Pg.95]

Reaction of coke with calcium oxide gives calcium carbide, which on treatment with water produces acetylene. This was for many years an important starting point for the production of acrylonitrile, vinyl chloride, vinyl acetate and other vinyl monomers. Furthermore, during World War II, Reppe developed routes for many other monomers although these were not viable under normal economic conditions. [Pg.10]

In the case of enamines derived from aldehydes a cycloaddition to give a cyclobutane occurs (48-50). Thus the enamine (16) reacted with methyl acrylate in acetonitrile to give a 91 % yield of methyl 2-dimethylamino-3,3-dimethylcyclobutane carboxylate (56). Similarly, treatment of (16) with diethylmaleate at 170° gave a 70% yield of diethyl 4-dimethylamino-3,3-dimethyl-l,2-cyclobutanedicarboxylate (57), and 16 and acrylonitrile gave a 65% yield of 2-dimethylamino-3,3-dimethylcyclobutanecarbonitrile (58). [Pg.126]

The theory of radiation-induced grafting has received extensive treatment. The direct effect of ionizing radiation in material is to produce active radical sites. A material s sensitivity to radiation ionization is reflected in its G value, which represents the number of radicals in a specific type (e.g., peroxy or allyl) produced in the material per 100 eV of energy absorbed. For example, the G value of poly(vinyl chloride) is 10-15, of PE is 6-8, and of polystyrene is 1.5-3. Regarding monomers, the G value of methyl methacrylate is 11.5, of acrylonitrile is 5.6, and of styrene is >0.69. [Pg.508]

Propose a mechanism to account for cleavage of the /3-cyanoethyl protecting group from the phosphate groups on treatment with aqueous ammonia. (Acrylonitrile, H2C=CHCN, is a by-product.) What kind of reaction is occurring ... [Pg.1117]

Acrylic textile fibers are primarily polymers of acrylonitrile. It is copolymerized with styrene and butadiene to make moldable plastics known as SA and ABS resins, respectively. Solutia and others electrolytically dimerize it to adiponitrile, a compound used to make a nylon intermediate. Reaction with water produces a chemical (acrylamide), which is an intermediate for the production of polyacrylamide used in water treatment and oil recovery. [Pg.128]

The only hydrazone previously converted to a nitrilimine is benzaldehyde phenylhydrazone 313 a which on treatment with Pb(OAc)4 in the presence of acrylonitrile (314 a) provided pyrazoline 315 a in 27% yield [90]. In all other... [Pg.44]

On reacting nitromethane and acrylonitrile in the presence of TCS 14/triethylamine in benzene (cf. also Scheme 7.42) the oxazolidine 1076, which is obtained in 85% yield, eliminates trimethylsilanol 4 in the presence of TsOH to give 40% d -oxazoline 1077 [104]. Heating of 1076, however, or treatment of 1076 with solid KF leads, via ring opening, elimination of HCN, and rearrangement to d-iso-oxazolidine 1078 in 82% yield this is converted by TsOH, with elimination of 4, into 83% isooxazole 1079 [104]. In contrast with 1076 the isooxazolidine 1080 de-... [Pg.175]

Treatment of mono- and diamines with acrylonitrile (Iter. 1) yields the nitriles, which are then reduced (Iter. 2), recovering the initial functional groups and thus a repetition of the acrylonitrile addition is possible. [Pg.15]

Many common polymers, polymeric additives and lubricants oxidise so rapidly after impact in liquid oxygen that they are hazardous. Of those tested, only acrylonitrile-butadiene, poly(cyanoethylsiloxane), poly(dimethylsiloxane) and polystyrene exploded after impact of 6.8-95 J intensity (5-70 ft.lbf). All plasticisers (except dibutyl sebacate) and antioxidants examined were very reactive. A theoretical treatment of rates of energy absorption and transfer is included [1], Previously, many resins and lubricants had been examined similarly, and 35 were found acceptable in liquid oxygen systems [2],... [Pg.1857]

The death of a 10-year-old girl following dermal exposure to acrylonitrile was reported by Lorz (1950). An acrylonitrile preparation had been applied to the scalp of the child as a treatment for head lice. The child experienced nausea, headache and dizziness. Death occurred 4 hours after application. The concentration was not specified in this case report. [Pg.49]

In animals, deaths from acrylonitrile have been reported in several species following inhalation, oral or dermal exposure. In most species, death appears to be related to cyanide poisoning. That the cyanide moiety is involved in human toxicity of acrylonitrile has been reported in a case study in which a human male was sprayed with acrylonitrile when a valve burst (Vogel and Kirkendall 1984). This individual suffered symptoms characteristic of cyanide poisoning, and treatments designed to reduce cyanide levels in the blood were required in order to save his life. [Pg.56]

Because acrylonitrile is listed as a hazardous substance, disposal of waste acrylonitrile is controlled by number of federal regulations (see Chapter 7). Rotary kiln, fluidized bed and liquid injection incineration are acceptable methods of acrylonitrile disposal (HSDB 1988). Underground injection is another disposal method. The most recent quantitative information on amount of acrylonitrile disposed in waste sites is for 1987. Emissions were 0.9 metric tons in surface water, 152 metric tons disposed through Publicly Owned Treatment Works (POTW), 92 metric tons disposed of on land 1,912 metric tons by underground injection (TR11988). Because acrylonitrile is relatively volatile and is also readily soluble in water, release to the environment from waste sites is of concern. [Pg.81]


See other pages where Acrylonitrile treatment is mentioned: [Pg.12]    [Pg.317]    [Pg.318]    [Pg.368]    [Pg.12]    [Pg.317]    [Pg.318]    [Pg.368]    [Pg.283]    [Pg.36]    [Pg.217]    [Pg.134]    [Pg.182]    [Pg.185]    [Pg.186]    [Pg.186]    [Pg.191]    [Pg.499]    [Pg.101]    [Pg.437]    [Pg.485]    [Pg.4]    [Pg.82]    [Pg.95]    [Pg.104]    [Pg.142]    [Pg.495]    [Pg.21]    [Pg.639]    [Pg.697]    [Pg.132]    [Pg.265]    [Pg.25]   
See also in sourсe #XX -- [ Pg.317 ]




SEARCH



© 2024 chempedia.info