Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile acetone

Organic cyanide compounds, or nitriles, have been implicated in numerous human fatalities and signs of poisoning — especially acetonitrile, acrylonitrile, acetone cyanohydrin, malonitrile, and succinonitrile. Nitriles hydrolyze to carboxylic acid and ammonia in either basic or acidic solutions. Mice (Mus sp.) given lethal doses of various nitriles had elevated cyanide concentrations in liver and brain the major acute toxicity of nitriles is CN release by liver processes (Willhite and Smith 1981). In general, alkylnitriles release CN much less readily than aryl alkylnitriles, and this may account for their comparatively low toxicity (Davis 1981). [Pg.943]

Polyelectrolytes useful as ion-exchange resins have been prepared by beating a mixture of acrylonitrile, acetone, formaldehyde, and sodium bisulfite in a strongly alkaline aqueous solution and then saponifying the resulting polymer. [Pg.86]

PROPYLENE - ISOPROPYL ALCOHOL, acrylonitrile. ACETONE. POLYPROPYLENE. [Pg.530]

PROPENE The major use of propene is in the produc tion of polypropylene Two other propene derived organic chemicals acrylonitrile and propylene oxide are also starting materials for polymer synthesis Acrylonitrile is used to make acrylic fibers (see Table 6 5) and propylene oxide is one component in the preparation of polyurethane polymers Cumene itself has no direct uses but rather serves as the starting material in a process that yields two valuable indus trial chemicals acetone and phenol... [Pg.269]

Propylene requirements for acrylates remain small compared to other chemical uses (polypropylene, acrylonitrile, propylene oxide, 2-propanol, and cumene for acetone and phenol). Hence, cost and availabihty are expected to remain attractive and new acrylate capacity should continue to be propylene-based until after the turn of the century. [Pg.152]

Acrylonitrile is miscible in a wide range of organic s lolvents, including acetone, benzene, carbon tetrachloride, diethyl ether, ethyl acetate, ethylene ... [Pg.181]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

Ring Synthesis From Nonheterocyclic Compounds. These methods may be further classified based on the number of bonds formed during the pyridine ring formation. Synthesis of a-picoline (2) from 5-oxohexanenitrile is a one-bond formation reaction (eq. 16) (49). The nitrile is obtained by reaction between acetone and acrylonitrile (50). If both reaction steps are considered together, the synthesis must be considered a two-bond forming one, ie, formation of (2) from acetone and acrylonitrile in a single step comes under the category of two-bond formation reaction. [Pg.330]

Another of the few selective syntheses of aLkylpyridines is one for a-picoline (2) (76). This is a two-step process (eq. 24) where acrylonitrile is used to monocyanoethylate acetone in the Hquid phase at 180°C and at autogenous pressure, 2 MPa (300 psig). The monoadduct, 5-cyano-2-pentanone, is then passed over a palladium-containing catalyst to reduce, cyclize, and dehydrogenate, in sequence. [Pg.333]

Block copolymers of vinyl acetate with methyl methacrylate, acryflc acid, acrylonitrile, and vinyl pyrrohdinone have been prepared by copolymeriza tion in viscous conditions, with solvents that are poor solvents for the vinyl acetate macroradical (123). Similarly, the copolymeriza tion of vinyl acetate with methyl methacrylate is enhanced by the solvents acetonitrile and acetone and is decreased by propanol (124). Copolymers of vinyl acetate containing cycHc functional groups in the polymer chain have been prepared by copolymeriza tion of vinyl acetate with A/,A/-diaIlylcyanamide and W,W-diaIl5lamine (125,126). [Pg.466]

Other modifications of the polyamines include limited addition of alkylene oxide to yield the corresponding hydroxyalkyl derivatives (225) and cyanoethylation of DETA or TETA, usuaHy by reaction with acrylonitrile [107-13-1/, to give derivatives providing longer pot Hfe and better wetting of glass (226). Also included are ketimines, made by the reaction of EDA with acetone for example. These derivatives can also be hydrogenated, as in the case of the equimolar adducts of DETA and methyl isobutyl ketone [108-10-1] or methyl isoamyl ketone [110-12-3] (221 or used as is to provide moisture cure performance. Mannich bases prepared from a phenol, formaldehyde and a polyamine are also used, such as the hardener prepared from cresol, DETA, and formaldehyde (228). Other modifications of polyamines for use as epoxy hardeners include reaction with aldehydes (229), epoxidized fatty nitriles (230), aromatic monoisocyanates (231), or propylene sulfide [1072-43-1] (232). [Pg.47]

Acetic Acid Acetic anhydride Acetoacetanilide Acetone cyanhydnn Acetyl chloride Acrolein Acrylonitrile Alcohols Alkaloids... [Pg.1028]

Class 6 Poisons such as acetone cyanohydrin, acetonitrile, acrylonitrile, allyl alcohol, allyl chloride, airiline, epiclilorohydrin, lead alkyls, organophosphorus compounds. [Pg.187]

Hydrogen cyanide is a reactant in the production of acrylonitrile, methyl methacrylates (from acetone), adiponitrile, and sodium cyanide. It is also used to make oxamide, a long-lived fertilizer that releases nitrogen steadily over the vegetation period. Oxamide is produced by the reaction of hydrogen cyanide with water and oxygen using a copper nitrate catalyst at about 70°C and atmospheric pressure ... [Pg.137]

Dynel, a modacrylic fiber, is produced by copolymerizing vinyl chloride with acrylonitrile. Solution spinning is also used where the polymer is dissolved in a solvent such as acetone. After the solvent is evaporated, the fibers are washed and subjected to stretching, which extends the fiber 4-10 times of the original length. [Pg.369]

Uses Used in the petroleum industry to make so-called alkylate for improved octane gasoline. Large quantities are polymerized to polypropylene for carpeting, upholstery, ropes, and other uses. Used in the chemical industry as a starting material for many large-volume chemicals such as acetone, acrylonitrile, and propylene oxide. [Pg.126]

Co-adsorption experiments show a complex role of the nature and concentration of chemisorbed ammonia species. Ammonia is not only one of the reactants for the synthesis of acrylonitrile, but also reaction with Br()>nsted sites inhibits their reactivity. In particular, IR experiments show that two pathways of reaction are possible from chemisorbed propylene (i) to acetone via isopropoxylate intermediate or (ii) to acrolein via allyl alcoholate intermediate. The first reaction occurs preferentially at lower temperatures and in the presence of hydroxyl groups. When their reactivity is blocked by the faster reaction with ammonia, the second pathway of reaction becomes preferential. The first pathway of reaction is responsible for a degradative pathway, because acetone further transform to an acetate species with carbon chain breakage. Ammonia as NH4 reacts faster with acrylate species (formed by transformation of the acrolein intermediate) to give an acrylamide intermediate. At higher temperatures the amide may be transformed to acrylonitrile, but when Brreform ammonia and free, weakly bonded, acrylic acid. The latter easily decarboxylate forming carbon oxides. [Pg.285]

S (2)-hydroxy-3-butenenitrile from acrolein and HCN trans hydrocyanation using, for instance, acetone cyanohydrin Hydrolysis of nitriles to amides, e.g. acrylonitrile to acrylamide Isomerization of glucose to fructose Esterifications and transesterifications Interesterify positions 1 and 3 of natural glycerides Oxidation of glucose to gluconic acid, glycolic acid to glyoxalic acid... [Pg.158]

ETHYLENE GLYCOL ETHYL MERCAPTAN DIMETHYL SULPHIDE ETHYL AMINE DIMETHYL AMIDE MONOETHANOLAMINE ETHYLENEDIAMINE ACRYLONITRILE PROPADIENE METHYL ACETYLENE ACROLEIN ACRYLIC ACID VINYL FORMATE ALLYL CHLORIDE 1 2 3-TRICHLOROPROPANE PROPIONITRILE CYCLOPROPANE PROPYLENE 1 2-DICHLOROPROPANE ACETONE ALLYL ALCOHOL PROPIONALDEHYDE PROPYLENE OXIDE VINYL METHYL ETHER PROPIONIC ACID ETHYL FORMATE METHYL ACETATE PROPYL CHLORIDE ISOPROPYL CHLORIDE PROPANE... [Pg.942]

Crabtree s catalyst was obtained from Strem Chemicals. The NBR grade used throughout was Krynac 38.50 (NBR containing 38% acrylonitrile units) from Bayer Rubber Inc. Solvents employed (chlorobenzene, acetone and 2-butanone) were used as received from Fisher Chemical Co. The purity of H2 and D2 (02 free) from Linde-Union Carbide was reported to be 99.99%. [Pg.126]

In a similar reaction, acrylonitrile plus acetone, 69> Eq. 10, the sole addition product has the orientation shown in 5. Coefficients from an HMO calculation of the LVMO of acrylonitrile are also shown. The... [Pg.160]


See other pages where Acrylonitrile acetone is mentioned: [Pg.80]    [Pg.135]    [Pg.70]    [Pg.373]    [Pg.80]    [Pg.135]    [Pg.70]    [Pg.373]    [Pg.217]    [Pg.467]    [Pg.251]    [Pg.494]    [Pg.414]    [Pg.5]    [Pg.29]    [Pg.85]    [Pg.54]    [Pg.558]    [Pg.219]    [Pg.1038]    [Pg.359]    [Pg.281]    [Pg.429]    [Pg.221]    [Pg.288]    [Pg.265]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



© 2024 chempedia.info