Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylate examples

Ca->,POa, inhibition/dispersion, Ca Phosphonate control, Fe stabilization MA/EA/VA Maleic anhydride/ethyl acrylate/vinyl acrylate examples Belclene 283, Polycol 90... [Pg.167]

Alkenes activated by electron-withdrawing groups at both ends of the double bond are more easily reduced than the analogous singly substituted alkenes, and the radical anions formed are less reactive. Examples include fumarodinitrile compared to acrylonitrile and dialkyl fumarates compared to alkyl acrylates. Fumarodinitrile (51) [2,35,36,48,55,70,71, 124] and simple alkyl fumarates (52) [7,10,15,55,70,125,126] have therefore been the subjects of a number of mechanistic studies as models for acrylonitrile and alkyl acrylates. Examples of the formation of LHDs on a preparative scale are given later, in Table 12. [Pg.824]

In polymers of the type —CH2—CH(X)— restriction to rotation is imposed by increasing the size of X, thereby raising Tg. In the acrylate example it is possible to copolymerize a mixture and the Tg of the random copolymer increases with increasing amounts of the methacrylate. [Pg.28]

In practice, synthetic polymers are sometimes divided into two classes, thermosetting and thermo-plMtic. Those polymers which in their original condition will fiow and can be moulded by heat and pressime, but which in their finished or cured state cannot be re softened or moulded are known as thermo setting (examples phenol formaldehyde or urea formaldehyde polymer). Thermoplastic polymers can be resoftened and remoulded by heat (examples ethylene polymers and polymers of acrylic esters). [Pg.1014]

Diethyl 3-oxoheptanedioate, for example, is clearly derived from giutaryl and acetic acid synthons (e.g. acetoacetic ester M. Guha, 1973 disconnection 1). Disconnection 2 leads to acrylic and acetoacetic esters as reagents. The dianion of acetoacetic ester could, in prin-ciple,be used as described for acetylacetone (p. 9f.), but the reaction with acrylic ester would inevitably yield by-products from aldol-type side-reactions. [Pg.207]

As a typical example, the catalytic reaction of iodobenzene with methyl acrylate to afford methyl cinnamate (18) is explained by the sequences illustrated for the oxidative addition, insertion, and /3-elimination reactions. [Pg.9]

Diene carboxylates can be prepared by the reaction of alkenyl halides with acrylates[34]. For example, pellitorine (30) is prepared by the reaction of I-heptenyl iodide (29) with an acrylate[35]. Enol triflates are reactive pseudo-halides derived from carbonyl compounds, and are utilized extensively for novel transformations. The 3,5-dien-3-ol triflate 31 derived from a 4,5-unsaturated 3-keto steroid is converted into the triene 32 by the reaction of methyl acrylate[36]. [Pg.132]

Donor substituents on the vinyl group further enhance reactivity towards electrophilic dienophiles. Equations 8.6 and 8.7 illustrate the use of such functionalized vinylpyrroles in indole synthesis[2,3]. In both of these examples, the use of acetyleneic dienophiles leads to fully aromatic products. Evidently this must occur as the result of oxidation by atmospheric oxygen. With vinylpyrrole 8.6A, adducts were also isolated from dienophiles such as methyl acrylate, dimethyl maleate, dimethyl fumarate, acrolein, acrylonitrile, maleic anhydride, W-methylmaleimide and naphthoquinone. These tetrahydroindole adducts could be aromatized with DDQ, although the overall yields were modest[3]. [Pg.84]

Indoles can also be alkylated by conjugate addition under alkaline conditions. Under acidic conditions, alkylation normally occurs at C3 (see Section 11.1). Table 9.1 includes examples of alkylation by ethyl acrylate, acrylonitrile, acrylamide and 4-vinylpyridine. [Pg.91]

Table 7.6 Values of Fj as a Function of fj for the Methyl Acrylate (Mi)-Vinyl Chloride (M2) System (Data used in Example 7.5)... Table 7.6 Values of Fj as a Function of fj for the Methyl Acrylate (Mi)-Vinyl Chloride (M2) System (Data used in Example 7.5)...
Copolymers can be used to introduce a mixture of chemical functionalities into a polymer. Acidic and basic substituents can be introduced, for example, through comonomers like acrylic acid and vinyl pyridine. The resulting copolymers show interesting amphoteric behavior, reversing their charge in solution with changes of pH. [Pg.469]

Acrylic polymers are considered to be nontoxic. In fact, the FDA allows certain acrylate polymers to be used in the packaging and handling of food. However, care must be exercised because additives or residual monomers present in various types of polymers can display toxicity. For example, some acryflc latex dispersions can be mild skin or eye irritants. This toxicity is usually ascribed to the surfactants in the latex and not to the polymer itself. [Pg.171]

The monomer pair, acrylonitrile—methyl acrylate, is close to being an ideal monomer pair. Both monomers are similar in resonance, polarity, and steric characteristics. The acrylonitrile radical shows approximately equal reactivity with both monomers, and the methyl acrylate radical shows only a slight preference for reacting with acrylonitrile monomer. Many acrylonitrile monomer pairs fall into the nonideal category, eg, acrylonitrile—vinyl acetate. This is an example of a nonideality sometimes referred to as kinetic incompatibiUty. A third type of monomer pair is that which shows an alternating tendency. [Pg.278]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Chemical Hazards. Chemical manufacturers and employees contend with various ha2ards inherent ia productioa of evea commonplace materials. For example, some catalysts used ia the manufacture of polyethylene (see Olefin polymers) ignite when exposed to air or explode if allowed to become too warm the basic ingredient ia fluorocarboa polymers, eg, Tefloa (see Fluorine compounds, organic), can become violently self-reactive if overheated or contaminated with caustic substances (45,46) one of the raw materials for the manufacture of acryflc fibers (see Fibers, acrylic) is the highly toxic hydrogen cyanide (see Cyanides). [Pg.94]

The versatility of this reaction is extended to a variety of aldehydes. The bisphenol derived from 2,6-di-/ f2 -butylphenol and furfural, (25) where R = furfuryl (13), is also used as an antioxidant. The utility of the 3,5-di-/ f2 -butyl-4-hydroxyben2yl moiety is evident in stabili2ets of all types (14), and its effectiveness has spurred investigations of derivatives of hindered alkylphenols to achieve better stahi1i2ing quaUties. Another example is the Michael addition of 2,6-di-/ f2 -butyl phenol to methyl acrylate. This reaction is carried out under basic conditions and yields methyl... [Pg.61]

Other examples of DAP copolymerizations of industrial interest include copolymerization with MMA in emulsion (50) and for light focusing rods (51) with vinyl naphthalene for lenses (52) with epoxy acrylates and glass fibers (53) epoxy acrylates and coatings (54) with diacetone acrylamide (55) with ahphatic diepoxide compounds (56) triaHyl cyanurate in lacquers for printed circuits (57) and DAIP with MMA (58). [Pg.85]

X-Ray Diffraction. Because of the rapid advancement of computer technology (qv), this technique has become almost routine and the stmctures of moderately complex molecules can be estabUshed sometimes in as Htde as 24 hours. An example illustrating the method is offered by Reference 24. The reaction of the acrylate (20) with phenyldiazo derivatives results in the formation of pyrazoline (21). The stereochemistry of the substituents and the conformation of the ring can only be estabUshed by single crystal x-ray diffraction. [Pg.309]

Copolymers of vinyUdene chloride and methyl acrylate have been studied by x-ray techniques (75). For example, the long period (lamellar thickness) for an 8.5 wt % methyl acrylate copolymer was found to be 9.2 nm by smaH-angle x-ray scattering. The unit cell is monoclinic, with a = 0.686 and c = 1.247 nm by wide-angle x-ray scattering. [Pg.432]

A more polar comonomer, eg, an AN comonomer, increases the water-vapor transmission more than VC when other factors are constant. For the same reason, AN copolymers are more resistant to penetrants of low cohesive energy density. AH VDC copolymers, however, are very impermeable to ahphatic hydrocarbons. Comonomers that lower T and increase the free volume in the amorphous phase increase permeability more than the polar comonomers higher acrylates are an example. Plasticizers increase permeabiUty for similar reasons. [Pg.435]

So-called pure acryUc latexes are employed for maximum durabiUty as required, for example, in high performance exterior latex paints. On the other hand, interior flat wall latex paints do not need the high resistance to exterior exposure and hydrolysis. The most widely used latexes for this appHcation are vinyl acetate copolymer latexes such as vinyl acetate/butyl acrylate (2-propenoic acid butyl ester) [141-32-2] copolymers having just sufficient... [Pg.339]


See other pages where Acrylate examples is mentioned: [Pg.436]    [Pg.90]    [Pg.352]    [Pg.436]    [Pg.90]    [Pg.352]    [Pg.283]    [Pg.1014]    [Pg.1047]    [Pg.89]    [Pg.134]    [Pg.186]    [Pg.196]    [Pg.276]    [Pg.279]    [Pg.283]    [Pg.284]    [Pg.285]    [Pg.285]    [Pg.413]    [Pg.360]    [Pg.428]    [Pg.49]    [Pg.228]    [Pg.162]    [Pg.267]    [Pg.354]    [Pg.355]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



© 2024 chempedia.info