Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids reactions Acidic solutions

Perhaps the simplest case of reaction of a solid surface is that where the reaction product is continuously removed, as in the dissolving of a soluble salt in water or that of a metal or metal oxide in an acidic solution. This situation is discussed in Section XVII-2 in connection with surface area determination. [Pg.282]

Oxidation states can be used to establish the stoichiometry for an equation. Consider the reaction between the manganate(VII) (permanganate) and ethanedioate (oxalate) ions in acidic solution. Under these conditions the MnO faq) ion acts as an oxidising agent and it is reduced to Mn (aq), i.e. [Pg.96]

When either hydrogen ions or hydroxide ions participate in a redox half-reaction, then clearly the redox potential is alTected by change of pH. Manganate(Vir) ions are usually used in well-acidified solution, where (as we shall see in detail later) they oxidise chlorine ions. If the pH is increased to make the solution only mildly acidic (pH = 3-6), the redox potential changes from 1.52 V to about 1.1 V, and chloride is not oxidised. This fact is of practical use in a mixture of iodide and chloride ions in mildly acid solution. manganate(VII) oxidises only iodide addition of acid causes oxidation of chloride to proceed. [Pg.102]

JiVith ammoniacal or hydrochloric acid solution of copper(I) chloride, carbon monoxide forms the addition compound CuCl. CO. 2H2O. This reaction can be used to quantitatively remove carbon monoxide from gaseous mixtures. [Pg.180]

In concentrated hydrochloric acid solution, the reaction is GeCl -p Cr [GeClj]-and salts of this anion are known. [Pg.197]

Arsenic present only in traces (in any form) can be detected by reducing it to arsine and then applying tests for the latter. In Marsh s test, dilute sulphuric acid is added dropwise through a thistle funnel to some arsenic-free zinc in a flask hydrogen is evolved and led out of the flask by a horizontal delivery tube. The arsenic-containing compound is then added to the zinc-acid solution, and the delivery tube heated in the middle. If arsenic is present, it is reduced to arsine by the zinc-acid reaction, for example ... [Pg.254]

Oxygen can be produced by certain reactions in solution, for example the oxidation of hydrogen peroxide by potassium manganate(VII) acidified with sulphuric acid ... [Pg.260]

Hydrogen peroxide has both oxidising properties (when it is converted to water) and reducing properties (when it is converted to oxygen) the half-reactions are (acid solution) ... [Pg.280]

Compare this reaction with (2) of the oxidising examples, where iron(II) is oxidised to iron(III) in acid solution change of pH, and complex formation by the iron, cause the complexed iron(III) to be reduced.)... [Pg.281]

Although sulphur dioxide, as a gas, is a reducing agent in the sense that it unites with oxygen, free or combined (for example in dioxides or peroxides) most of its reducing reactions in aqueous solution are better regarded as reactions of sulphurous acid (in acid solution), or the sulphite ion (in alkaline solution). [Pg.290]

The presence of chloric(I) acid makes the properties of chlorine water different from those of gaseous chlorine, just as aqueous sulphur dioxide is very different from the gas. Chloric(I) acid is a strong oxidising agent, and in acid solution will even oxidise sulphur to sulphuric acid however, the concentration of free chloric(I) acid in chlorine water is often low and oxidation reactions are not always complete. Nevertheless when chlorine bleaches moist litmus, it is the chloric(I) acid which is formed that produces the bleaching. The reaction of chlorine gas with aqueous bromide or iodide ions which causes displacement of bromine or iodine (see below) may also involve the reaction... [Pg.323]

The Reaction has the following limitations (i) a compound that can liberate nitrous acid in acid solution is required (e.g., a metallic nitrite or a nitroso-amine, p. 204). (2) Nitrophenols and />-substituted phenols do not give the test. (3) Among the dihydroxyphenols. only resorcinol gives a satisfactory positive test. [Pg.340]

To a cold aqueous solution of benzoquinone, add 1 drop of sulphurous acid solution (SOj-water) the solution turns deep green-brown owing to the intermediate formation of quinhydrone, CeH402,CeIl4(0H)2. Now add excess of sulphurous acid the solution becomes colourless owing to the formation of hydroquinone. Add a few drops of FeClj solution the reaction is reversed and the deep yellow colour (distinct from that of FeCl ) is restored. [Pg.371]

Physical properties. Majority are liquids except p toluidine and 1- and 2-naphthylamine. All are colourless when pure, but rapidly darken on exposure to air and light. All are very sparingly soluble in water, but dissolve readily in dilute mineral acids (except the naphthyl-amines, which are only moderately soluble in adds). They form colourless crystalline salts e.g., CjHjNH2,HCl) which are soluble in water these aqueous solutions usually have an add reaction owing to hydrolysis, and give the reactions of both the amine and the acid from which they are derived. Addition of alkali to the acid solution liberates the amine. [Pg.373]

The hydrobromic acid sulphuric acid solution may be prepared by the reduction of bromine with sulphurous acid (Section 11,49, 1) distillation of the reaction product is unnecessary ... [Pg.271]

IsoValeric acid. Prepare dilute sulphuric acid by adding 140 ml. of concentrated sulphuric acid cautiously and with stirring to 85 ml. of water cool and add 80 g. (99 ml.) of redistilled woamyl alcohol. Place a solution of 200 g. of crystallised sodium dicliromate in 400 ml. of water in a 1-litre (or 1-5 litre) round-bottomed flask and attach an efficient reflux condenser. Add the sulphuric acid solution of the isoamyl alcohol in amaU portions through the top of the condenser shake the apparatus vigorously after each addition. No heating is required as the heat of the reaction will suffice to keep the mixture hot. It is important to shake the flask well immediately after each addition and not to add a further portion of alcohol until the previous one has reacted if the reaction should become violent, immerse the flask momentarily in ice water. The addition occupies 2-2-5 hours. When all the isoamyl alcohol has been introduced, reflux the mixture gently for 30 minutes, and then allow to cool. Arrange the flask for distillation (compare Fig. II, 13, 3, but with the thermometer omitted) and collect about 350 ml. of distillate. The latter consists of a mixture of water, isovaleric acid and isoamyl isovalerate. Add 30 g. of potassium not sodium) hydroxide pellets to the distillate and shake until dissolved. Transfer to a separatory funnel and remove the upper layer of ester (16 g.). Treat the aqueous layer contained in a beaker with 30 ml. of dilute sulphuric acid (1 1 by volume) and extract the liberated isovaleric acid with two... [Pg.355]

An alternative procedure for the above test is as follows. Mix 2-3 ml. of 2 per cent, aqueous paraperiodic acid solution with 1 drop of dilute sulphuric acid (ca. 2 5N) and add 20-30 mg. of the compound. Shake the mixture for 5 minutes, and then pass sulphur dioxide through the solution until it acquires a pale yellow colour (to remove the excess of periodic acid and also iodic acid formed in the reaction). Add 1-2 ml. of Schiff s reagent (Section 111,70) the production of a violet colour constitutes a positive test. [Pg.447]

The experimental conditions necessary for the preparation of a solution of a diazonium salt, diazotisation of a primary amine, are as follows. The amine is dissolved in a suitable volume of water containing 2 5-3 equivalents of hydrochloric acid (or of sulphuric acid) by the application of heat if necessary, and the solution is cooled in ice when the amine hydrochloride (or sulphate) usually crystallises. The temperature is maintained at 0-5°, an aqueous solution of sodium nitrite is added portion-wise until, after allowing 3-4 minutes for reaction, the solution gives an immediate positive test for excess of nitrous acid with an external indicator—moist potassium iodide - starch paper f ... [Pg.590]

In the preparation of bromo compounds by the Sandmeyer reaction, the amine is generally diazotised in sulphuric acid solution (or in hydrobromic acid solution), and the resulting aryldiazonium sulphate (or bromide) is treated with a solution of cuprous bromide in excess of hydrobromic acid the addition... [Pg.592]

Diphenic acid. Phenanthrene upon oxidation in acetic acid solution at 85° with 30 per cent, hydrogen peroxide gives diphenic acid (diphenyl-2 2 -di-carboxyHc acid) no phenanthraquinone is formed under these experimental conditions. The reaction is essentially an oxidation of phenanthrene with peracetic acid. (For another method of preparation, see Section I V,74.)... [Pg.755]

The last-named reaction provides an excellent method for the preparation of a-substituted glutaric acids the intermediate alkyl (aryl) -2-cyanoethyl-malonate is both hydrolysed and decarboxylated re ily by boiling with an excess of 48 per cent, hydrobromic acid solution. [Pg.915]

In view of the high reactivity and sensitivity to oxidation of o-phenylone-diamine, the normal experimental conditions of the Skraup reaction are modified the condensation is carried out hi the presence of glycerol, arsenic acid solution and dilute sulphuric acid. [Pg.991]


See other pages where Acids reactions Acidic solutions is mentioned: [Pg.35]    [Pg.37]    [Pg.112]    [Pg.112]    [Pg.260]    [Pg.2717]    [Pg.46]    [Pg.107]    [Pg.108]    [Pg.236]    [Pg.240]    [Pg.266]    [Pg.367]    [Pg.424]    [Pg.78]    [Pg.112]    [Pg.138]    [Pg.178]    [Pg.356]    [Pg.415]    [Pg.417]    [Pg.549]    [Pg.567]    [Pg.875]    [Pg.917]    [Pg.975]    [Pg.1093]    [Pg.1098]    [Pg.121]   


SEARCH



Acid solutions reactions

Acid solutions reactions

Acid-Base Reactions in Aqueous Solutions

Acid-base reactions acidic solutions

Acid-base reactions basic solutions

Acid-base reactions buffer solutions

Acidic solution balancing half reactions

Acidic solutions balancing oxidation-reduction reactions

Acidic solutions half-reaction method

Acidic solutions, balancing redox reactions

Aqueous solutions acid-base reactions

Balancing Oxidation-Reduction Reactions in Acidic and A Basic Solutions

Broensted acid-base reactions solution

Oxidation-reduction reaction acidic solution

Reaction Stoichiometry in Solutions Acid-Base Titrations

Reactions between oxides and phosphoric acid solutions

Reactions in Acidic Solution

Reactions in Aqueous Solutions I Acids, Bases, and Salts

Reactions in Concentrated Solutions The Acidity Function

Reactions in concentrated solutions the acidity factor

Reactions of free radicals with hyaluronic acid in simple solutions

Redox reaction acidic solution

Solution stoichiometry acid-base reactions

© 2024 chempedia.info