Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid plants sulfur emissions

This chapter examines industrial (nonequUibrium) SO2 oxidation and its effect on tail gas SO2 concentrations. It also discusses methods to decrease acid plant sulfur emissions. [Pg.341]

In the early 1970s, air pollution requirements led to the adoption of the double contact or double absorption process, which provides overall conversions of better than 99.7%. The double absorption process employs the principle of intermediate removal of the reaction product, ie, SO, to obtain favorable equiUbria and kinetics in later stages of the reaction. A few single absorption plants are stiU being built in some areas of the world, or where special circumstances exist, but most industriali2ed nations have emission standards that cannot be achieved without utili2ing double absorption or tad-gas scmbbers. A discussion of sulfuric acid plant air emissions, control measures, and emissions calculations can be found in Reference 98. [Pg.183]

Sulfuric acid plants continue to be substantial sources of sulfur oxide emissions. The emissions estimates presented in Tables I and II pre-umably refer only to emissions from sulfur-burning acid plants. The emissions from plants producing by-product acid from smelter gases, sludge acid, and other such sources are probably classified with the emissions from the appropriate industries. [Pg.11]

Steady operation and control of catalyst bed temperatures result in lower acid plant SO2 emissions. This is relatively easy for sulfur burning acid plants, but much more challenging for metallurgical acid plants, especially those treating Peirce-Smith converter gases that are intermittent and highly variable in terms of flow and composition. [Pg.347]

Small amounts of sulfuric acid mist or aerosol are always formed in sulfuric acid plants whenever gas streams are cooled, or SO and H2O react, below the sulfuric acid dew point. The dew point varies with gas composition and pressure but typically is 80—170°C. Higher and lower dew point temperatures are possible depending on the SO concentration and moisture content of the gas. Such mists are objectionable because of both corrosion in the process and stack emissions. [Pg.183]

Double-Absorption Plants. In the United States, newer sulfuric acid plants ate requited to limit SO2 stack emissions to 2 kg of SO2 per metric ton of 100% acid produced (4 Ib /short ton Ib = pounds mass). This is equivalent to a sulfur dioxide conversion efficiency of 99.7%. Acid plants used as pollution control devices, for example those associated with smelters, have different regulations. This high conversion efficiency is not economically achievable by single absorption plants using available catalysts, but it can be attained in double absorption plants when the catalyst is not seriously degraded. [Pg.186]

Particulate emissions are controHed mainly through venting, baghouses and water scmbbers. Atmospheric zinc loss is estimated at 100 g/1 or zinc mines, mostly from handling dry ore and concentrate and wind erosion of tailing pHes. Sulfur dioxide emissions have been reduced by installing double absorption acid plants and improved containment of dilute gases. [Pg.410]

A bleed from the scmbbing system is sent to a sour slurry stripper. The water is then clarified and can be recycled to minimize the volume of effluent to be biotreated and discharged or evaporated. The acid gas from the acid gas removal system and from the sour slurry stripper is fed to a Claus plant, where salable elemental sulfur (qv) is produced. For maximum sulfur recovery and minimal sulfur emissions, the Shell Claus off-gas treating process (SCOT) is used. [Pg.270]

Particulate emissions from zinc processing are collected in baghouses or ESPs. SO2 in high concentrations is passed directly to an acid plant for production of sulfuric acid by the contact process. Low-concentration SO2 streams are scrubbed with an aqueous ammonia solution. The resulting ammonium sulfate is processed to the crystalline form and marketed as fertilizer. [Pg.504]

Fluorides and dust are emitted to the air from the fertilizer plant. All aspects of phosphate rock processing and finished product handling generate dust, from grinders and pulverizers, pneumatic conveyors, and screens. The mixer/reactors and dens produce fumes that contain silicon tetrafluoride and hydrogen fluoride. A sulfuric acid plant has two principal air emissions sulfur dioxide and acid mist. If pyrite ore is roasted, there will also be particulates in air emissions that may contain heavy metals such as cadmium, mercury, and lead. [Pg.69]

Implementation of cleaner production processes and pollution prevention measures can yield both economic and environmental benefits. The following production-related targets can be achieved by measures such as those described above. The numbers relate to the production processes before the addition of pollution control measures. In sulfuric acid plants that use the double-contact, double absorption process, emissions levels of 2 to 4 kilograms of sulfur dioxide... [Pg.69]

In the sulfuric acid process, the sulfuric acid removed must be regenerated in a sulfuric acid plant which is generally not a part of the alkylation unit and may be located off-site. Spent sulfuric acid generation is substantial typically in the range of 13 to 30 pounds per barrel of alkylate. Air emissions from the alkylation process may arise from process vents and fugitive emissions. [Pg.92]

Silveston, P. L and Hudgins, R. R., Reduction of sulfur dioxide emissions from a sulfuric acid plant by means of feed modulation. Environ. Sci. Technol. 15, 419-422 (1981). [Pg.280]

Centaur A process for reducing sulfur dioxide emissions from sulfuric acid plants. An activated caibon with both absorptive and catalytic properties is used. The technology uses fixed beds of Centaur carbon to oxidize sulfur dioxide to sulfuric acid in the pores of the carbon. The sulfuric acid is recovered as dilute sulfuric acid, which is used a make-up water in the sulfuric acid production process. Developed by Calgon Carbon Corporation in the 1990s. Calgon Carbon and Monsanto Enviro-Chem operated a Centaur pilot plant at an existing sulfuric acid facility in 1996. [Pg.59]

The principal cause of acid rain is the combustion of fossil fuels that produce sulfur and nitrogen emissions. The primary sources are electrical power plants, automobiles, and smelters. Power plants produce most of the sulfur emissions and automobiles most of the nitrogen emissions. Other sources of acid rain include nitrogen fertilizers, jet aircraft, and industrial emissions. Just as in our discussion of ozone, numerous reactions are involved in the formation of acid rain. The process can be understood by considering the transformation of sulfur and nitrogen oxides into their respective acidic forms sulfuric acid and nitric acid. Sulfur, present up to a few percent in fuels such as coal, is converted to sulfur dioxide when the fuel is burned. The sulfur dioxide reacts with water to produce sulfurous acid, H,SO ,, that is then oxidized to sulfuric... [Pg.267]

Both lime and slaked limes are use to reduce sulfur emissions, which contribute to acid precipitation, from power plants, particularly coal-fired plants. By using lime, more than 95% of the sulfur can be eliminated from the emissions. Calcium oxide reacts with sulfur dioxide to produce calcium sulfite CaOfe) + S02( —> CaS03(). Sulfur dioxide is also removed by spraying limewater in the flue gas. Limewater, also called milk of lime, is a fine suspension of calcium hydroxide in water. Other pollutants removed with lime include sulfur trioxide, hydrofluoric acid, and hydrochloric acid. [Pg.63]

A. Vavere and J. R. Home, S02 Emissions deductions in Sulfuric Acid Plants, AIChE meeting, Minneapolis, Minnesota, Aug. 1992. [Pg.195]

S02 emissions from sulfuric acid plants are controlled in spray towers. Effluent gases contain less than 0.5 percent S02. The S02 emissions have to be controlled (or recovered as elemental sulfur by, for example, the Claus process). An approach is to absorb the S02 in a lime (or limestone) slurry (promoted by small amounts of carboxylic acids, such as adipic acid). Flow is in parallel downward. The product calcium salt is sent to a landfill or sold as a by-product. Limestone is pulverized to 80 to 90 percent through 200 mesh. Slurry concentrations of 5 to 40 percent have been used in pilot plants. [Pg.47]

The acid gas from the Sul find regenerator must be disposed of in an environmentally acceptable manner. The Claus process offers an effective means for converting nearly all of the sulfur in the acid gas to saleable elemental sulfur. The tail gas from the Claus plant still contains some sulfur compounds. To minimize sulfur emissions from the plant, the Claus tail gas can be fed to a Shell Claus ff-gas Jreating (SCOT) unit where most of this sulfur is recovered and recycled to the Claus plant. With use of the SCOT Process, additional marketable sulfur is recovered within the Claus plant while tail gas sulfur emissions are substantially reduced, to typically less than 250 ppmv. [Pg.130]

A packed gas-absorber column is installed in a sulfuric acid plant to control sulfur dioxide (S02) emissions. The absorber unit consists of the column, packing, ductwork, fan, and solvent feed pump. Pertinent input data are as follows ... [Pg.588]


See other pages where Acid plants sulfur emissions is mentioned: [Pg.1171]    [Pg.468]    [Pg.1171]    [Pg.468]    [Pg.321]    [Pg.89]    [Pg.1]    [Pg.739]    [Pg.769]    [Pg.207]    [Pg.214]    [Pg.84]    [Pg.88]    [Pg.90]    [Pg.92]    [Pg.95]    [Pg.52]    [Pg.34]    [Pg.7]    [Pg.167]    [Pg.89]    [Pg.66]    [Pg.321]    [Pg.2]    [Pg.9]    [Pg.23]    [Pg.207]    [Pg.214]    [Pg.1178]   
See also in sourсe #XX -- [ Pg.342 , Pg.343 , Pg.344 ]




SEARCH



1-0 acid plant

Sulfur acid plants

Sulfur emissions

Sulfuric acid plant 2

© 2024 chempedia.info