Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid catalysts alkylations

In the long run solid catalysts are expected to be used, which would reduce the safety problems of liquid-phase alkylations. However, much further work is needed to develop such processes,7 and their introduction will be costly. The startup of a pilot plant to demonstrate a solid acid catalyst alkylation technology jointly developed by Catalytica, Conoco, and Neste Oy has been announced.307... [Pg.257]

Some normal butane is also produced from butylenes but this is estimated at only 4-6%. The higher octane isobutylene alkylate and a claimed yield increase must be contrasted with normal paraffin production from olefins and a higher isobutane requirement. The typical mixed 03 = 704= feed can be made to produce a high octane alkylate with either acid catalyst by the optimization of other variables. The highest alkylate octane numbers reported are produced with sulfuric acid catalyst, alkylating with a typical cat cracker butylene olefin. [Pg.319]

This chapter discusses alkylation and its evolution into a modern refining process. We review the basic chemistry of alkylation, assess the properties and other merits of H F versus H2SO4, identify key drivers in the process and discuss the evolution of one particular process - the AlkyClean solid acid catalyst alkylation process. [Pg.476]

Application of Supercritical Fluids to Solid Acid Catalyst Alkylation and Regeneration... [Pg.72]

Initial experiments performed at the INL compared different catalysts, fluids, and operating conditions to determine the effect of SCF on solid acid catalyst alkylation (5). Three sets of studies were performed a catalyst comparison using six different catalysts (i.e., two zeolites, two sulfated metal oxides, and two Nafion catalysts) with methane as a cosolvent an exploration of the effect of varying methane addition on alkylation using a USY zeolite catalyst and a study of the effect of seven cosolvents (i.e., three hydrocarbons, two fluorocarbons, carbon dioxide, and sulfur hexafluoride) at L, ML, NC-L, and SCF conditions on the USY catalyst performance. [Pg.74]

Alkylation units take two small molecules of isobutane and olefin (propylene, butylenes, or pentylenes) and combine them into one large molecule of high-octane liquid called alkylate. This alkylation combining process (Figure 11-8) takes place inside a reactor filled with an acid catalyst. Alkylate is a superior antiknock product that is used in blending unleaded gasoline. [Pg.256]

Alkylation fScheme 6.41 or refinery alkylation is the reaction of isobutane with short-chain olefins (C3—C5) in the presence of highly acidic catalysts. Alkylates are particularly suitable... [Pg.180]

While alkylation of aromatics with olefins or alcohols occurs at the aromatic ring over acid catalysts, alkylation of the alkyl groups proceeds over basic catalysts. Pines and coworkers reported that the side-chain alkylation of toluene with ethylene is effectively catalyzed by the use of a mixture of sodium and a promotor such as anthracene or o-chlorotoluene. ... [Pg.233]

We can extend the general principles of electrophilic addition to acid catalyzed hydration In the first step of the mechanism shown m Figure 6 9 proton transfer to 2 methylpropene forms tert butyl cation This is followed m step 2 by reaction of the car bocation with a molecule of water acting as a nucleophile The aUcyloxomum ion formed m this step is simply the conjugate acid of tert butyl alcohol Deprotonation of the alkyl oxonium ion m step 3 yields the alcohol and regenerates the acid catalyst... [Pg.247]

Alkyl halides by themselves are insufficiently electrophilic to react with benzene Aluminum chloride serves as a Lewis acid catalyst to enhance the electrophihcity of the alkylating agent With tertiary and secondary alkyl halides the addition of aluminum chlonde leads to the formation of carbocations which then attack the aromatic ring... [Pg.481]

Acetic anhydride adds to acetaldehyde in the presence of dilute acid to form ethyUdene diacetate [542-10-9], boron fluoride also catalyzes the reaction (78). Ethyfldene diacetate decomposes to the anhydride and aldehyde at temperatures of 220—268°C and initial pressures of 14.6—21.3 kPa (110—160 mm Hg) (79), or upon heating to 150°C in the presence of a zinc chloride catalyst (80). Acetone (qv) [67-64-1] has been prepared in 90% yield by heating an aqueous solution of acetaldehyde to 410°C in the presence of a catalyst (81). Active methylene groups condense acetaldehyde. The reaction of isobutfyene/715-11-7] and aqueous solutions of acetaldehyde in the presence of 1—2% sulfuric acid yields alkyl-y -dioxanes 2,4,4,6-tetramethyl-y -dioxane [5182-37-6] is produced in yields up to 90% (82). [Pg.51]

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

Lewis acid catalysts, such as AlCl or BF, coordinate strongly with non-bonded electron pairs but they iateract only weakly with bonded electron pairs. Therefore, n-donon reagents, such as alkyl haUdes, can react with Lewis acid catalysts even under complete exclusion of moisture or any other proton source ... [Pg.552]

However, strong protic acid catalysts are needed when 7T- or CJ-donor alkylating agents are used to produce carbocationic or highly polarized donor-acceptor-complexes as the reactive alkylating iatermediates ... [Pg.552]

Friedel-Crafts catalysts are electron acceptors, ie, Lewis acids. The alkylating ability of ben2yl chloride was selected to evaluate the relative catalytic activity of a large number of Lewis acid haUdes. The results of this study suggest four categories of catalyst activity (200) (Table 1). [Pg.564]

Diisopropjibenzenes (DIPB) are readily obtained via Eriedel-Crafts alkylation of benzene or cumene by propylene. This reaction inhquid phase has not evolved drastically since 1980 with the exception of the large variety of heterogeneous acid catalysts that are now being used, mainly zeoHtes, type HZSM-12, giving a para/meta ratio = 0.7 (4). In fact, propylene can also be replaced by isopropyl alcohol coming from the hydrogenation of acetone that... [Pg.487]

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Synthesis ofp-Ethyltoluene. j )i7n7-Ethyltoluene, the feedstock for j )-methylstyrene, is difficult to separate from the products of toluene alkylation with ethane using conventional acidic catalysts. The unique configurational diffusion effect of ZSM-5 permits -dialkylbenzenes to be produced in one step. In the alkylation of toluene with ethene over a chemically modified ZSM-5, -ethyltoluene is obtained at 97% purity (58). [Pg.459]

Isopropylnaphthalenes can be prepared readily by the catalytic alkylation of naphthalene with propjiene. 2-lsopropylnaphthalene [2027-17-0] is an important intermediate used in the manufacture of 2-naphthol (see Naphthalenederivatives). The alkylation of naphthalene with propjiene, preferably in an inert solvent at 40—100°C with an aluminum chloride, hydrogen fluoride, or boron trifluoride—phosphoric acid catalyst, gives 90—95% wt % 2-isopropylnaphthalene however, a considerable amount of polyalkylate also is produced. Preferably, the propylation of naphthalene is carried out in the vapor phase in a continuous manner, over a phosphoric acid on kieselguhr catalyst under pressure at ca 220—250°C. The alkylate, which is low in di- and polyisopropylnaphthalenes, then is isomerized by recycling over the same catalyst at 240°C or by using aluminum chloride catalyst at 80°C. After distillation, a product containing >90 wt % 2-isopropylnaphthalene is obtained (47). [Pg.487]

In the presence of strong acid catalysts such as sulfuric acid, aUphatic (R CHO) aldehydes react with alkyl hydroperoxides, eg, tert-55ky hydroperoxides, to form hydroxyalkyl alkyl peroxides (1), where X = OH R, = hydrogen, alkyl and = tert — alkyl. [Pg.114]

In the presence of strong acid catalysts many commonly used commercial alkyl hydroperoxides decompose to acetone to some extent. Consequendy, the diperoxyketals derived from other ketones and alkyl hydroperoxides are often contaminated with small amounts of diperoxyketals derived from acetone (1, X = OOR, = methyl, R = R = tert — alkyl). [Pg.115]

Substituted Phenols. Phenol itself is used in the largest volume, but substituted phenols are used for specialty resins (Table 2). Substituted phenols are typically alkylated phenols made from phenol and a corresponding a-olefin with acid catalysts (13). Acidic catalysis is frequendy in the form of an ion-exchange resin (lER) and the reaction proceeds preferentially in the para position. For example, in the production of /-butylphenol using isobutylene, the product is >95% para-substituted. The incorporation of alkyl phenols into the resin reduces reactivity, hardness, cross-link density, and color formation, but increases solubiHty in nonpolar solvents, dexibiHty, and compatibiHty with natural oils. [Pg.292]

The catalysts used in the industrial alkylation processes are strong Hquid acids, either sulfuric acid [7664-93-9] (H2SO or hydrofluoric acid [7664-39-3] (HE). Other strong acids have been shown to be capable of alkylation in the laboratory but have not been used commercially. Aluminum chloride [7446-70-0] (AlCl ) is suitable for the alkylation of isobutane with ethylene (12). Super acids, such as trifluoromethanesulfonic acid [1493-13-6] also produce alkylate (13). SoHd strong acid catalysts, such as Y-type zeoHte or BE -promoted acidic ion-exchange resin, have also been investigated (14—16). [Pg.45]

Gymene. Methyhsopropylben2ene [25155-15-1] can be produced over a number of different acid catalysts by alkylation of toluene with propylene (63—66). Although the demand for cymene is much lower than for cumene, one commercial plant was started up in 1987 at the Yan Shan Petrochemical Company in the People s RepubHc of China. The operation of this plant is based on SPA technology offered by UOP for cumene. The cymene is an intermediate for the production of y -cresol (3-methylphenol) [108-59-4]. [Pg.51]


See other pages where Acid catalysts alkylations is mentioned: [Pg.822]    [Pg.913]    [Pg.4939]    [Pg.822]    [Pg.913]    [Pg.4939]    [Pg.22]    [Pg.157]    [Pg.2789]    [Pg.111]    [Pg.325]    [Pg.464]    [Pg.230]    [Pg.552]    [Pg.553]    [Pg.555]    [Pg.556]    [Pg.185]    [Pg.247]    [Pg.483]    [Pg.114]    [Pg.330]    [Pg.294]    [Pg.45]    [Pg.46]    [Pg.48]    [Pg.48]    [Pg.50]    [Pg.51]   
See also in sourсe #XX -- [ Pg.596 ]




SEARCH



Alkyl catalysts

Alkylation catalysts

Alkylation catalysts, acidic

© 2024 chempedia.info