Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene multiple bonding

Et2P-PEt2 + RX Et2P(R)+-PEt2 X-(C6H )2P-P(C6Hii)2 + RX (CsH )2PR + (C6H )2PX Diphosphines will add across ethelenic or acetylenic multiple bonds. [Pg.422]

Carbon can also form multiple bonds with other carbon atoms. This results in unsaturated hydrocarbons such as olefins (alkenes), containing a carbon-carbon double bond, or acetylenes (alkynes), containing a carbon-carbon triple bond. Dienes and polyenes contain two or more unsaturated bonds. [Pg.127]

Multiple bonds are very common m organic chemistry Ethylene (C2H4) contains a carbon-carbon double bond m its most stable Lewis structure and each carbon has a completed octet The most stable Lewis structure for acetylene (C2H2) contains a carbon-carbon triple bond Here again the octet rule is satisfied... [Pg.14]

As portrayed m Figure 2 20 the two carbons of acetylene are connected to each other by a 2sp-2sp cr bond and each is attached to a hydrogen substituent by a 2sp-ls CT bond The unhybndized 2p orbitals on one carbon overlap with their counterparts on the other to form two rr bonds The carbon-carbon triple bond m acetylene is viewed as a multiple bond of the ct + rr + rr type... [Pg.92]

Another analogous series of unsaturated hydrocarbons that contain just one multiple bond, but, instead of being a double bond, it is a triple bond is the alkynes. The names of all the compounds end in -yne. The only compound m this series that is at all common happens to be an extremely hazardous material. It is a highly unstable (to heat, shock, and pressure), highly flammable gas that is the first compound in the series. This two-carbon unsaturated hydrocarbon with a triple bond between its two carbon atoms is called ethyne, and indeed this is its proper name. It is, however, known by its common name, acetylene. [Pg.189]

The above cycloaddition process consists of two separate [3-1-2] cycloaddition steps and represents a 1,3-2,4 addition of a multiple bond system to a hetero-1,3-diene [7S7]. The structure ot the azomethine imine intermediate has been proved unequivocally by X-ray analysis [195] Ethylene [194], acetylene [/iS2] . many alkyl- and aryl- as well sgemmal dialkyl- and diaryl-substituted alkenes [196,197, 198, 199], dienes [200], and alkynes [182, 201], certain cyclic alkenes [198, 199,... [Pg.865]

Fluormation likewise significandy destabilizes the multiple bonds in allenes and acetylenes [105] Fluoro- and difluoroacetylene are dangerously explosive, and hexafluoro-2-butyne is very susceptible to both concerted and biradical addition reacbons [106, 107] (see pp 757 and 767)... [Pg.993]

Hydrazides of vicinal acetylene-substituted derivatives of benzoic and azole carboxylic acids are important intermediate compounds because they can be used for cyclization via both a- and /3-carbon atoms of a multiple bond involving both amine and amide nitrogen atoms (Scheme 131). Besides, the hydrazides of aromatic and heteroaromatic acids are convenient substrates for testing the proposed easy formation of a five-membered ring condensed with a benzene nucleus and the six-membered one condensed with five-membered azoles. [Pg.62]

One of the most important publications on this subject, considered frorn the chemical side, is that of Gertrude Woker. This investigator drew attention to the importance of multiple bonding. The double bond is often accompanied by a pleasant, but the triple or acetylenic linkage generally produces a disagreeable smell a multiplicity of double bond can produce an effect equivalent to a triple bond. [Pg.30]

Shortly after the tetravalent nature of carbon was proposed, extensions to the Kekule-Couper theory were made w7hen the possibility of multiple bonding between atoms was suggested. Emil Erlenmeyer proposed a carbon-carbon triple bond for acetylene, and Alexander Crum Brown proposed a carbon-carbon double bond for ethylene. In 1865, Kekule provided another major advance when he suggested that carbon chains can double back on themselves to form rings of atoms. [Pg.7]

Carbon likes to form bonds so well with itself that it can form multiple bonds to satisfy its valence of four. When two carbon atoms are linked with a single bond and their other valencies (three each) are satisfied by hydrogens, the compound is ethane. When two carbons are linked by a double bond (two covalent bonds) and their other valencies (two each) are satisfied by hydrogens, the compound is ethylene. When two carbons are linked by a triple bond (three covalent bonds) and their other valencies (one each) are satisfied by hydrogens, the compound is acetylene. [Pg.40]

A number of hydrocarbon radicals having multiple bonds at the radical centre have also been trapped in inert matrices and studied by IR spectroscopy. Thus, ethynyl radical was obtained by vacuum UV photolysis (9) of matrix-isolated acetylene (Shepherd and Graham, 1987) as well as when acetylene and argon atoms excited in a microwave discharge were codeposited at 12 K (Jacox and Olson, 1987). An appearance of diacetylene bands was observed when the matrices were warmed up, while the absorptions of the radical C2H disappeared. Detailed isotopic studies of D-and C-labelled ethynyl radicals showed a surprisingly low frequency of the C=C bond stretching vibration at 1846 cm instead of c.2100cm for a true C=C triple bond (the band at 2104 cm was attributed to the... [Pg.35]

Many of the Lewis structures in Chapter 9 and elsewhere in this book represent molecules that contain double bonds and triple bonds. From simple molecules such as ethylene and acetylene to complex biochemical compounds such as chlorophyll and plastoquinone, multiple bonds are abundant in chemistry. Double bonds and triple bonds can be described by extending the orbital overlap model of bonding. We begin with ethylene, a simple hydrocarbon with the formula C2 H4. [Pg.678]

Besides the weak bonds listed in the previous table, there are other multiple bonds that endow the molecules in which they are situated with a positive enthalpy of formation. Such compounds are termed endothermic compounds. The danger they represent does not necessarily come from the fact that they are unstable, but is related to the exothermicity of their decomposition reaction. The most convincing examples are the acetylenic compounds, and in particular, acetylene. It is also the case for ethylene, aromatic compounds, imines and nitriles. [Pg.97]

The reactivity of dichloro carbene towards acetylenic bonds was systematically investigated by Dehmlow19, 20 with respect to substitution of the acetylene, especially those containing additional C-C multiple bonds. It was shown that with aiyl alkyl acetylenes, e.g. 1-phenyl-butyne-l, often the normal cyclopropenone formation occurs only to a minor extent (to yield, e.g. 14), whilst the main reaction consists of an insertion of a second carbene moiety into the original acetylene-alkyl bond (giving, e.g. 15) ... [Pg.13]

Reactions of salts of 1,2,3-triazole with electrophiles provide an easy access to 1,2,3-triazol-jV-yl derivatives although, usually mixtures of N-l and N-2 substituted triazoles are obtained that have to be separated (see Section 5.01.5). Another simple method for synthesis of such derivatives is addition of 1,2,3-triazole to carbon-carbon multiple bonds (Section 5.01.5). N-l Substituted 1,2,3-triazoles can be selectively prepared by 1,3-dipolar cycloaddition of acetylene or (trimethylsilyl)acetylene to alkyl or aryl azides (Section 5.01.9). [Pg.136]

Even more than [6 + 4] and [8 + 2] cycloaddition reactions, the [2 + 2 + 2] cycloaddition reactions require a very well preorganized orientation of the three multiple bonds with respect to each other. In most cases, this kind of cycloaddition reaction is catalyzed by transition metal complexes which preorientate and activate the reacting multiple bonds111,324. The rarity of thermal [2 + 2 + 2] cycloadditions, which are symmetry allowed and usually strongly exothermic, is due to unfavorable entropic factors. High temperatures are required to induce a reaction, as was demonstrated by Berthelot, who described the synthesis of benzene from acetylene in 1866325, and Ullman, who described the reaction between nor-bomadiene and maleic anhydride in 1958326. As a consequence of the limiting scope of this chapter, this section only describes those reactions in which two of the participating multiple bonds are within the same molecule. [Pg.457]

In a search of jr-donor systems for the preparation of compounds having a metallic conductivity, the bis-thioxanthene cumulene 56 was obtained. It was oxidized by cone. H2SO4 to the acetylenic dication 57 rather than undergoing the expected protonation of the multiple bonds (equation 22)36. [Pg.749]

You will find that in petrochemical processes, the more multiple bonds, the more unstable the compound is, meaning it is likely to engage in a chemical reaction to change its urge to fill up its rings. Acetylene is much... [Pg.4]

ELECTROPHILIC ADDITIONS TO CARBON-CARBON MULTIPLE BONDS A. Chlorinating agents Sodium hypochlorite solution 7V-Chloro succi n i m i de Antimony pentachloride Formation of chlorohydrins from alkenes Chlorination with solvent participation and cyclization Controlled chlorination of acetylenes... [Pg.210]

From among the variety of non-carbohydrate precursors, acetylenes and alkenes have found wide application as substrates for the synthesis of monosaccharides. Although introduction of more than three chiral centers having the desired, relative stereochemistry into acyclic compounds containing multiple bonds is usually difficult, the availability of such compounds, as well as the choice of methods accessible for their functionalization, make them convenient starting-substances for the synthesis. In this Section is given an outline of all of the synthetic methods that have been utilized for the conversion of acetylenic and olefinic precursors into carbohydrates. Only reactions leading from dialkenes to hexitols are omitted, as they have already been described in this Series.7... [Pg.3]

We must not, however, suppose that all multiple bonds are necessarily inert. In fact, the data of Table 2.3 imply that this is a special feature of triply bonded dinitrogen, since the N=N bond is rather weak. Acetylene, for example, reacts readily with hydrogen gas (especially if catalyzed) to form ethane because the energy required to reduce the triple C=C bond to a single C—C bond and to break two H—H bonds is more than compensated by the formation of four new heteroatomic bonds ... [Pg.37]

B-Bromo and B-iodo-9-borabicyclo[3.3.1]nonane add similarly in a cis fashion to terminal triple bonds 471 They do not react, however, with alkenes and internal acetylenic bonds. In contrast to the results mentioned above, phenyl-substituted chloroboranes (PhBCl2, Ph2BCl) do not participate in haloboration. Instead, the C—B bond adds across the multiple bond to form phenylalkyl-(alkenyl) boranes.466,468... [Pg.328]

Pyrrole and indole rings can also be constructed by intramolecular addition of nitrogen to a multiple bond activated by metal ion complexation. Thus, 1-aminomethyl-l-alkynyl carbinols (obtained by reduction of cyanohydrins of acetylenic ketones) are cyclized to pyrroles by palladium(II) salts. In this reaction the palladium(II)-complexed alkyne functions as the electrophile with aromatization involving elimination of palladium(II) and water (Scheme 42) (81TL4277). [Pg.532]


See other pages where Acetylene multiple bonding is mentioned: [Pg.620]    [Pg.88]    [Pg.88]    [Pg.620]    [Pg.88]    [Pg.88]    [Pg.115]    [Pg.204]    [Pg.128]    [Pg.269]    [Pg.555]    [Pg.200]    [Pg.139]    [Pg.187]    [Pg.279]    [Pg.66]    [Pg.120]    [Pg.610]    [Pg.99]    [Pg.61]    [Pg.120]    [Pg.590]    [Pg.321]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Acetylene bonding

Bond, acetylenic

Bond, acetylenic multiple

© 2024 chempedia.info