Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxygen reaction with acetaldehyde

On the other hand, the adducts with a carbon-carbon linkage, e.g. 6-cyanodihydrobenzophenanthridines (Scheme 1, Nu = CN) are rather re-sistent to acids. A number of reactions with carbon nucleophiles (cyanide, Grignard reagent, nitromethane, acetone, butanone, acetaldehyde) are known and weU documented in the literature [8], Only a little is known about QBA reactions with oxygen, nitrogen, and sulfur nucleophiles [8]. [Pg.167]

In the second series of experiments, the products from the photo-oxidation of diethyl ether, carried out in a Teflon bag reactor at ppm and ppb levels, have been determined by withdrawing vapour samples and monitoring by gas chromatography, HPLC and by chemiluminescence analysis. The major reaction products which have been measured are ethyl formate, ethyl acetate, acetaldehyde, formaldehyde, PAN, methyl nitrate and ethyl nitrate. The products observed arise from the decomposition reactions of the 1-ethoxyethoxy radical and from its reaction with oxygen. The data enable the establishment of a quantitative mechanism for the photo-oxidative reaction. In addition the rate of conversion of NO to NO2, determined by chemiluminescence analysis, shows that for each molecule of ether reacted only one molecule of NO is converted to NO2. In further end-product analyses experiments, the OH radical initiated photo-oxidation of n-hexane or the photolyses of 2- or 3-hexyl nitrites were studied to examine the... [Pg.128]

Oxidation. Acetaldehyde is readily oxidised with oxygen or air to acetic acid, acetic anhydride, and peracetic acid (see Acetic acid and derivatives). The principal product depends on the reaction conditions. Acetic acid [64-19-7] may be produced commercially by the Hquid-phase oxidation of acetaldehyde at 65°C using cobalt or manganese acetate dissolved in acetic acid as a catalyst (34). Liquid-phase oxidation in the presence of mixed acetates of copper and cobalt yields acetic anhydride [108-24-7] (35). Peroxyacetic acid or a perester is beheved to be the precursor in both syntheses. There are two commercial processes for the production of peracetic acid [79-21 -0]. Low temperature oxidation of acetaldehyde in the presence of metal salts, ultraviolet irradiation, or osone yields acetaldehyde monoperacetate, which can be decomposed to peracetic acid and acetaldehyde (36). Peracetic acid can also be formed directiy by Hquid-phase oxidation at 5—50°C with a cobalt salt catalyst (37) (see Peroxides and peroxy compounds). Nitric acid oxidation of acetaldehyde yields glyoxal [107-22-2] (38,39). Oxidations of /)-xylene to terephthaHc acid [100-21-0] and of ethanol to acetic acid are activated by acetaldehyde (40,41). [Pg.50]

Sorbic acid is oxidized rapidly in the presence of molecular oxygen or peroxide compounds. The decomposition products indicate that the double bond farthest from the carboxyl group is oxidized (11). More complete oxidation leads to acetaldehyde, acetic acid, fumaraldehyde, fumaric acid, and polymeric products. Sorbic acid undergoes Diels-Alder reactions with many dienophiles and undergoes self-dimerization, which leads to eight possible isomeric Diels-Alder stmctures (12). [Pg.282]

Reactions with molecular species above the arrow e.g. RIO) involve subsequent reactions with these species to produce the indicated products. In most cases the reactants shown to the left of the arrow participate in the slowest or rate-determining step]. The CH3O radical formed in Rll then follows reaction R7. The H02 radical formed in RIO is the other member of the family and is linked with HO in a variety of chain reactions. These radicals are produced following HO attack on hydrocarbons or by photodissociation of oxygenated hydrocarbons such as formaldehyde (RIO) and acetaldehyde ... [Pg.68]

Liquid phase oxidation reaction of acetaldehyde with Mn acetate catalyst can be considered as pseudo first order irreversible reaction with respect to oxygen, and the reaction occurred in liquid film. The value of kinetic constant as follow k/ = 6.64.10 exp(-12709/RT), k2 = 244.17 exp(-1.8/RT) and Lj = 3.11.10 exp(-13639/RT) m. kmor. s. The conversion can be increased by increasing gas flow rate and temperature, however the effect of impeller rotation on the conversion is not significant. The highest conversion 32.5% was obtained at the rotation speed of 900 rpm, temperature 55 C, and gas flow rate 10" m. s. The selectivity of acetic acid was affected by impeller rotation speed, gas flow rate and temperature. The highest selectivity of acetic acid was 70.5% at 500 rpm rotation speed, temperature of 55 C... [Pg.224]

Butenes were subjected to photosensitized reaction with molecular oxygen in methanol. 1-Butene proved unreactive. A single hydroperoxide, l-butene-3-hydroperoxide, was produced from 2-butene and isolated by preparative gas chromatography, Thermal and catalyzed decomposition of pure hydroperoxide in benzene and other solvents did not result in formation of any acetaldehyde or propionaldehyde. The absence of these aldehydes suggests that they arise by an addition mechanism in the autoxidation of butenes where they are important products. l-Butene-3-hydroperoxide in the absence of catalyst is converted predominantly to methyl vinyl ketone and a smaller quantity of methyl vinyl carbinol —volatile products usually not detected in important quantities in the autoxidation of butene. [Pg.105]

First experiments on oxygen atom reactions with hydrocarbons, with the zone of discharge in water vapor, as well as in O2, used as a source of 0 atoms, have shown that the reaction products are formaldehyde, acetaldehyde, acids, alcohols, peroxides, i.e., products of lower degrees of conversion than that yielding H20, CO, and C02. [Pg.39]

Thus, CH20 and CO are obtained in equal amounts. Other reactions of a lower probability are the formation of alcohol by reaction 0 + C2H6 - C2H6OH, possibly depending on pressure, and the formation of acetaldehyde 0 + C2H6 - C2H 0 + H2. It will be noted that the formation of alcohol was observed by Murad and Noyes63 in the course of oxygen atom reactions with ethane. [Pg.46]

Great attention was paid to oxygen atom reactions with acetaldehyde. It will be mentioned that the study of this reaction encountered greater difficulties. [Pg.51]

In studying the reaction of oxygen atoms with CH3CHO by using the photochemical method, at a pressure of 100 mm. Hg and with sensitization by mercury, Cvetanovi664 came to another conclusion, namely, that the reaction of oxygen atoms with acetaldehyde yielded mainly hydroxyl and the CH3CO radical. The hydroxyl formed reacted with an acetaldehyde molecule to form water, and acetyl yields diacetyl. The main reaction products were found to be water and biacetyl. [Pg.52]

Although the oxidation of ethylene to acetaldehyde was known for a number of years,506 its utility depended on the catalytic regeneration of Pd(0) in situ with cop-per(II) chloride discovered by Smidt and coworkers.507 508 Air oxidation of Cu(I) to Cu(n) makes a complete catalytic cycle. This coupled three-step transformation is known as the Wacker process [Eqs. (9.97)-(9.99)]. The overall reaction [Eq. (9.100)] is the indirect oxidation with oxygen of alkenes to carbonyl compounds ... [Pg.471]

A more complicated reaction scheme is proposed by the authors to include the formation of the by-products acetonitrile, acetaldehyde and ethylene. However, appropriate rate coefficients cannot be given as the reactions appear to be partially homogeneous gas phase reactions, implying that factors like the reactor geometry are also involved. Regarding the oxidation mechanism, the authors assume that two hydrogen atoms are first abstracted from propene, followed by reaction with surface oxygen or NH species. [Pg.167]

To understand the significant effect of catalyst nature, a better understanding of the main reactions, peracetic acid decomposition, and its reaction with acetaldehyde was needed. A literature -survey showed that the kinetics were not well studied, most of the work being done at very low catalyst concentration 1 p.p.m.), and there is disagreement with respect to the kinetic expressions reported by different authors. The emphasis has always been on the kinetics but not on the products obtained, which are frequently assumed to be only acetic acid and oxygen. Consequently, the effectiveness of a catalyst was measured only by the rates and not by the significant amount of by-products that can be produced. We have studied the kinetics of these reactions, supplemented by by-product studies and experiments with 14C-tagged acetaldehyde and acetic acid to arrive at a reaction scheme which allows us to explain the difference in behavior of the different metal ions. [Pg.364]

Methane reacts only slowly with oxygen below 400° C. Ethane oxidation was observed by Bone and Hill (S) at 290° to 323° C. Formaldehyde, a reaction product, was found to increase, reach a maximum, and then decrease. Addition in amounts of 1% to a 3 to 1 ethane-oxygen mixture at 316° C. and 720 mm. eliminated the induction period, but other additives such as nitregen dioxide, acetaldehyde, ethyl alcohol, or water, were also more or less effective. [Pg.61]


See other pages where Oxygen reaction with acetaldehyde is mentioned: [Pg.221]    [Pg.97]    [Pg.49]    [Pg.400]    [Pg.8]    [Pg.124]    [Pg.260]    [Pg.264]    [Pg.151]    [Pg.274]    [Pg.900]    [Pg.54]    [Pg.19]    [Pg.204]    [Pg.119]    [Pg.240]    [Pg.204]    [Pg.104]    [Pg.284]    [Pg.216]    [Pg.297]    [Pg.101]    [Pg.284]    [Pg.50]    [Pg.14]    [Pg.344]    [Pg.363]    [Pg.912]    [Pg.717]    [Pg.6]    [Pg.588]    [Pg.122]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Acetaldehyde reactions

Reaction with oxygen

© 2024 chempedia.info