Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accuracy list

As you assemble this information, focus on providing as much specific information as possible. If you re writing about your skills as an administrative assistant, for example, in addition to listing your typing speed and accuracy, list specific word processing programs you re proficient in using, such as Microsoft Word, WordPerfect, and so forth. [Pg.73]

The Accuracy list simply adjusts the quality of the plug-in. Higher quality means that your computer needs to work harder. Faster machines (-1- 700 MHz CPU) should use the High setting unless you have a particularly complex project with a lot of effects. This really affects only timeline playback of the project in real time. You should definitely use High whenever you render, because the computer will take as much time as it needs to create the final output. [Pg.170]

The Accuracy list simply adjusts the quality of the plug-in. Higher quality... [Pg.171]

The procedure of testing must include measurements which have to provide reliable information about the quality of the object to be tested. The list of characteristics of measurement errors is selected on the basis of the required end results, methods of its calculation, form of presentation of the accuracy factors, reliability of the end result. These factors are of utmost attention in attestation of the procedure of testing. [Pg.961]

This section gives a listing of some basis sets and some notes on when each is used. The number of primitives is listed as a simplistic measure of basis set accuracy (bigger is always slower and usually more accurate). The contraction scheme is also important since it determines the basis set flexibility. Even two basis sets with the same number of primitives and the same contraction scheme are not completely equivalent since the numerical values of the exponents and contraction coefficients determine how well the basis describes the wave function. [Pg.85]

There are several types of basis functions listed below. Over the past several decades, most basis sets have been optimized to describe individual atoms at the EIF level of theory. These basis sets work very well, although not optimally, for other types of calculations. The atomic natural orbital, ANO, basis sets use primitive exponents from older EIF basis sets with coefficients obtained from the natural orbitals of correlated atom calculations to give a basis that is a bit better for correlated calculations. The correlation-consistent basis sets have been completely optimized for use with correlated calculations. Compared to ANO basis sets, correlation consistent sets give a comparable accuracy with significantly fewer primitives and thus require less CPU time. [Pg.85]

For many projects, a basis set cannot be chosen based purely on the general rules of thumb listed above. There are a number of places to obtain a much more quantitative comparison of basis sets. The paper in which a basis set is published often contains the results of test calculations that give an indication of the accuracy of results. Several books, listed in the references below, contain extensive tabulations of results for various methods and basis sets. Every year, a bibliography of all computational chemistry papers published in the previous... [Pg.89]

There are numerous articles and references on computational research studies. If none exist for the task at hand, the researcher may have to guess which method to use based on its assumptions. It is then prudent to perform a short study to verify the method s accuracy before applying it to an unknown. When an expert predicts an error or best method without the benefit of prior related research, he or she should have a fair amount of knowledge about available options A savvy researcher must know the merits and drawbacks of various methods and software packages in order to make an informed choice. The bibliography at the end of this chapter lists sources for reviewing accuracy data. Appendix A of this book provides short reviews of many software packages. [Pg.135]

There is no one best method for describing solvent effects. The choice of method is dependent on the size of the molecule, type of solvent effects being examined, and required accuracy of results. Many of the continuum solvation methods predict solvation energy more accurately for neutral molecules than for ions. The following is a list of preferred methods, with those resulting in the highest accuracy and the least amount of computational effort appearing first ... [Pg.213]

Methods for obtaining electronic excited-state energies could be classified by their accuracy, ease of use, and computational resource requirements. Such a list, in order of preferred method, would be as follows ... [Pg.220]

The indicator method is especially convenient when the pH of a weU-buffered colorless solution must be measured at room temperature with an accuracy no greater than 0.5 pH unit. Under optimum conditions an accuracy of 0.2 pH unit is obtainable. A Hst of representative acid—base indicators is given in Table 2 with the corresponding transformation ranges. A more complete listing, including the theory of the indicator color change and of the salt effect, is also available (1). [Pg.467]

These relationships predict the binding Hquid content for wet agglomeration with an accuracy of only ca 30%. The Hquid content required to agglomerate a particular feed material depends, for example, on the interfacial properties of the system (45). Typical values of moisture content required for hailing a variety of materials are listed in Table 2. Very accurate information on the optimum Hquid content to agglomerate a particular feed material must be obtained from experimental tests. [Pg.112]

In order to ensure thermodynamic consistency, in almost all cases these properties are calculated from Tr. and the vapor pressure and liquid density correlation coefficients listed in those tables. This means that there will be slight differences between the values listed here and those in the DIPPR tables. Most of the differences are less than 1%, and almost all the rest are less than the estimated accuracy of the quantity in question. [Pg.183]

The effect of the disturbance on the controlled variable These models can be based on steady-state or dynamic analysis. The performance of the feedforward controller depends on the accuracy of both models. If the models are exac t, then feedforward control offers the potential of perfect control (i.e., holding the controlled variable precisely at the set point at all times because of the abihty to predict the appropriate control ac tion). However, since most mathematical models are only approximate and since not all disturbances are measurable, it is standara prac tice to utilize feedforward control in conjunction with feedback control. Table 8-5 lists the relative advantages and disadvantages of feedforward and feedback control. By combining the two control methods, the strengths of both schemes can be utilized. [Pg.730]

The current transfortners and voltage transformers, when tised, must conform to lEC 60044 and lEC 60186, as noted in the list of standards. Instrument transformers with the following accuracies must be used ... [Pg.251]

To put the errors in comparative models into perspective, we list the differences among strucmres of the same protein that have been detennined experimentally (Fig. 9). The 1 A accuracy of main chain atom positions corresponds to X-ray structures defined at a low resolution of about 2.5 A and with an / -factor of about 25% [192], as well as to medium resolution NMR structures determined from 10 interproton distance restraints per residue [193]. Similarly, differences between the highly refined X-ray and NMR structures of the same protein also tend to be about 1 A [193]. Changes in the environment... [Pg.293]

Eortunately, a 3D model does not have to be absolutely perfect to be helpful in biology, as demonstrated by the applications listed above. However, the type of question that can be addressed with a particular model does depend on the model s accuracy. At the low end of the accuracy spectrum, there are models that are based on less than 25% sequence identity and have sometimes less than 50% of their atoms within 3.5 A of their correct positions. However, such models still have the correct fold, and even knowing only the fold of a protein is frequently sufficient to predict its approximate biochemical function. More specifically, only nine out of 80 fold families known in 1994 contained proteins (domains) that were not in the same functional class, although 32% of all protein structures belonged to one of the nine superfolds [229]. Models in this low range of accuracy combined with model evaluation can be used for confirming or rejecting a match between remotely related proteins [9,58]. [Pg.295]

Similar accuracies have been found for thick, homogeneous, complex specimens when corrections for secondary excitation are also included. With appropriate standards, total accuracies of 2% have been demonstrated. Because the determination of the lighter elements (i.e., 5 < Z< 15) are more sensitive to the uncertainties in the data base items listed above, less accuracy should be expected for these elements. [Pg.366]

The results of the CHN Test are listed in Table 2. The quoted accuracy of the CHN test is 3=0.3% by weight. The hydrogen to carbon atomic ratio was... [Pg.362]

The relative merits of various MO methods have been discussed in die literature. In general, the ab initio type of calculations will be more reliable, but the semiempirical calculations are faster in terms of computer time. The complexity of calculation also increases rapidly as the number of atoms in the molecule increases. The choice of a method is normally made on the basis of evidence that the method is adequate for the problem at hand and the availability of appropriate computer programs and equipment. Results should be subjected to critical evaluation by comparison widi experimental data or checked by representative calculations using higher-level mediods. Table 1.12 lists some reported deviations from experimental AHf for some small hydrocarbons. The extent of deviation gives an indication of the accuracy of the various types of MO calculations in this application. [Pg.28]

These types of stoichiometric calculations are commonplace and can provide reliable estimates for the material balance. As with any calculation method, one should list the assumptions to qualify the accuracy of the estimate. Limited field measurements can always be done later to verify the estimated emissions. [Pg.370]

We are now in a position to examine the relative accuracies of a variety of different model chemistries by considering their performance on the G2 molecule set. The following table lists the mean absolute deviation from experiment, the standard deviation and the largest positive and negative deviations from experiment for each model chemistry. The table is divided into two parts the first section lists results for single model chemistries, and the remaining sections present results derived from... [Pg.146]

Because of their central importance in chemistry, atomic weights have been continually refined and improved since the first tabulations by Dalton (1803 -5). By 1808 Dalton had included 20 elements in his list and these results were substantially extended and improved by Berzelius during the following decades. An illustration of the dramatic and continuing improvement in accuracy and precision during the past 100 y is given in Table 1.3. In 1874 no atomic weight was quoted to better than one part in 200, but by 1903 33 elements had values quoted to one part in 10 and 2 of these (silver and... [Pg.15]


See other pages where Accuracy list is mentioned: [Pg.484]    [Pg.161]    [Pg.484]    [Pg.161]    [Pg.240]    [Pg.480]    [Pg.2745]    [Pg.218]    [Pg.366]    [Pg.51]    [Pg.39]    [Pg.46]    [Pg.57]    [Pg.136]    [Pg.161]    [Pg.211]    [Pg.269]    [Pg.369]    [Pg.97]    [Pg.473]    [Pg.296]    [Pg.229]    [Pg.360]    [Pg.23]    [Pg.390]    [Pg.346]    [Pg.314]    [Pg.333]    [Pg.102]   


SEARCH



© 2024 chempedia.info