Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy absorption spectra

The above fomuilae for the absorption spectrum can be applied, with minor modifications, to other one-photon spectroscopies, for example, emission spectroscopy, photoionization spectroscopy and photodetachment spectroscopy (photoionization of a negative ion). For stimulated emission spectroscopy, the factor of fflj is simply replaced by cOg, the stimulated light frequency however, for spontaneous emission... [Pg.248]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

Microwave spectroscopy began in 1934 with the observation of the -20 GHz absorption spectrum of ammonia by Cleeton and Williams. Here we will consider the microwave region of the electromagnetic... [Pg.1233]

Whereas ATR spectroscopy is most commonly applied in obtaining infrared absorption spectra of opaque materials, reflection-absorption infrared spectroscopy (RAIRS) is usually used to obtain the absorption spectrum of a thin layer of material adsorbed on an opaque metal surface. An example would be carbon monoxide adsorbed on copper. The metal surface may be either in the form of a film or, of greaf imporfance in fhe sfudy of cafalysfs, one of fhe parficular crysfal faces of fhe mefal. [Pg.64]

EXAFS is part of the field of X-ray absorption spectroscopy (XAS), in which a number of acronyms abound. An X-ray absorption spectrum contains EXAFS data as well as the X-ray absorption near-edge structure, XANES (alternatively called the near-edge X-ray absorption fine structure, NEXAFS). The combination of XANES (NEXAFS) and EXAFS is commonly referred to as X-ray absorption fine structure, or XAFS. In applications of EXAFS to surface science, the acronym SEXAFS, for surface-EXAFS, is used. The principles and analysis of EXAFS and SEXAFS are the same. See the article following this one for a discussion of SEXAFS and NEXAFS. [Pg.215]

In Modulation Spectroscopy, which is mosdy used to characterize semiconductor materials, the peak positions, intensities and widths of features in the absorption spectrum are monitored. The positions, particularly the band edge (which defines the band gap)> are the most useful, allowing determination of alloy concentration. [Pg.371]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

The preceding empirical measures have taken chemical reactions as model processes. Now we consider a different class of model process, namely, a transition from one energy level to another within a molecule. The various forms of spectroscopy allow us to observe these transitions thus, electronic transitions give rise to ultraviolet—visible absorption spectra and fluorescence spectra. Because of solute-solvent interactions, the electronic energy levels of a solute are influenced by the solvent in which it is dissolved therefore, the absorption and fluorescence spectra contain information about the solute-solvent interactions. A change in electronic absorption spectrum caused by a change in the solvent is called solvatochromism. [Pg.435]

In the process of inhibition polypyrocatechin borate interacts with polyethylene macroradicals to form the B—O—C bonds. This is confirmed by the fact that the absorption spectrum of polyethylene inhibited with polypyrocatechin borate revealed the bands in the region of 1350 cm" characteristic for the B—O—C bond. There is no such a band in the spectrum of pure polypyrocatechin borate after heating under the same conditions. Chemical analysis of boron in polyethylene provides support for the IR-spectroscopy data concerning the presence of chemically bonded boron in polyethylene after destruction. [Pg.88]

Figure 9-13. Absorption spectrum of mLPPP, determined using photolhermal deflection spectroscopy (PDS) - from Ref. [143]. Figure 9-13. Absorption spectrum of mLPPP, determined using photolhermal deflection spectroscopy (PDS) - from Ref. [143].
The HS2 radical was detected by its infrared absorption spectrum and the S2 molecule by luminescence spectroscopy. In addition, infrared bands assigned to dimers of disulfane molecules were observed at higher H2S2 concentrations. The HS2- radicals may further be split into hydrogen atoms and S2 molecules during the photolysis since the concentration of HS2- first increases and then decreases while that of S2 steadily increases. No evidence for the thiosulfoxide H2S=S was found, and the probably formed HS- radicals are assumed to be unable to leave their cage in the matrix and either recombine to H2S2 or form H2+S2 [69]. [Pg.118]

In an earlier work, we have proposed a theoretical procedure for the spectroscopy of antiferromagnetically (AF) coupled transition-metal dimers and have successfully applied this approach to the electronic absorption spectrum of model 2-Fe ferredoxin. In this work we apply this same procedure to the [Fe2in - 82) P o - CeH48)2)2 complex in order to better understand the electronic structure of this compound. As in our previous work" we base our analysis on the Intermediate Neglect of the Differential Overlap model parameterized for spectroscopy (INDO/S), utilizing a procedure outlined in detail in Reference 4. [Pg.358]

For a comparison of experimental Mossbauer isomer shifts, the values have to be referenced to a common standard. According to (4.23), the results of a measurement depend on the type of source material, for example, Co diffused into rhodium, palladium, platinum, or other metals. For Fe Mossbauer spectroscopy, the spectrometer is usually calibrated by using the known absorption spectrum of metallic iron (a-phase). Therefore, Fe isomer shifts are commonly reported relative to the centroid of the magnetically split spectrum of a-iron (Sect. 3.1.3). Conversion factors for sodium nitroprusside dihydrate, Na2[Fe(CN)5N0]-2H20, or sodium ferrocyanide, Na4[Fe(CN)]6, which have also been used as reference materials, are found in Table 3.1. Reference materials for other isotopes are given in Table 1.3 of [18] in Chap. 1. [Pg.81]


See other pages where Spectroscopy absorption spectra is mentioned: [Pg.9]    [Pg.584]    [Pg.585]    [Pg.263]    [Pg.264]    [Pg.1968]    [Pg.19]    [Pg.873]    [Pg.371]    [Pg.249]    [Pg.667]    [Pg.254]    [Pg.108]    [Pg.117]    [Pg.120]    [Pg.141]    [Pg.428]    [Pg.451]    [Pg.59]    [Pg.357]    [Pg.257]    [Pg.457]    [Pg.76]    [Pg.464]    [Pg.362]    [Pg.233]    [Pg.20]    [Pg.473]    [Pg.482]    [Pg.508]    [Pg.108]    [Pg.279]    [Pg.123]    [Pg.138]    [Pg.140]    [Pg.213]    [Pg.308]   


SEARCH



© 2024 chempedia.info