Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption interfacial area

Lujuid-Pha.se Transfer. It is difficult to measure transfer coefficients separately from the effective interfacial area thus data is usually correlated in a lumped form, eg, as k a or as These parameters are measured for the Hquid film by absorption or desorption of sparingly soluble gases such as O2 or CO2 in water. The Hquid film resistance is completely controlling in such cases, and kjji may be estimated as since x (Fig. 4). This... [Pg.36]

To determine the mass-transfer rate, one needs the interfacial area in addition to the mass-transfer coefficient. For the simpler geometries, determining the interfacial area is straightforward. For packed beds of particles a, the interfacial area per volume can be estimated as shown in Table 5-27-A. For packed beds in distillation, absorption, and so on in Table 5-28, the interfacial area per volume is included with the mass-transfer coefficient in the correlations for HTU. For agitated liquid-liquid systems, the interfacial area can be estimated... [Pg.606]

For modest changes in temperature the influence of temperature upon the interfacial area a may be neglected. For example, in experiments on the absorption of SO9 in water, Whitney and Vivian [Chem. Eng, Pi og., 45, 323 (1949)] found no appreciable effect of temperature upon kcCi over the range from 10 to 50°C. [Pg.610]

Note that the product of the mass-transfer coefficient and the interfacial area is a volumetric coefficient and obviates the need for a value of the interfacial area. While areas for mass transfer on plates have been measured, the experimental contacting equipment cuffered significantly from that used for commercial distillation or gas absorption, and the reported areas are considered unreliable for design purposes. [Pg.1382]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

Liquid Dispersion Spray columns are used with slurries or when the reaction product is a solid. The absorption of SO9 by a hme slurry is an example. In the treatment of phosphate rock with sulfuric acid, offgases contain HF and SiF4. In a spray column with water, solid particles of fluorosilic acid are formed but do not harm the spray operation. The coefficient /cl in spray columns is about the same as in packed columns, but the spray interfacial area is much lower. Considerable backmixing of the gas also takes place, which helps to make the spray volumetri-caUy inefficient. Deentrainment at the outlet usually is needed. [Pg.2115]

Gas/Liquid Interfacial Area This has been evaluated by measuring absorption rates like those of CO9 in NaOH. A correlation by Charpentier (Chem. Eng. Journal, 11, 161 [1976]) is... [Pg.2121]

The effective interfacial area is used in mass transfer studies as an undivided part of individual and overall coefficients when it is difficult to separate and determine the effective area. The work of Shulman et.al.,65 presents a well organized evaluation of other work in addition to their own. One of the difficulties in correlating tower packing performance lies in obtaining the correct values for the effective interfacial areas of the packing on which the actual absorption, desorption, chemical reaction, etc. are completed. Figures 9-47 A, B, C, D, E, F, G present a correlation for Avater flow based on the ammonia-water data of Fellinger [27] and are valid for absorption work. [Pg.320]

The absorption rate increased with increasing nominal liquid velocity for all particle sizes and decreased with increasing particle size for all liquid velocities. The absorption rates were lower than those measured in an equivalent gas-liquid system with no solid particles present. The difference is explained as being due to a higher rate of bubble coalescence and, consequently, a lower gas-liquid interfacial area in the gas-liquid fluidized bed. [Pg.124]

Adlington and Thompson (Al) measured the gas-liquid interfacial area in beds of particles of from 0.3- to 3-mm diameter by oxygen absorption in a sodium sulfite solution. They found that the interfacial area decreased with decreasing bed porosity, and was less sensitive to changes in particle size. [Pg.125]

The results of Massimilla et al., 0stergaard, and Adlington and Thompson are in substantial agreement on the fact that gas-liquid fluidized beds are characterized by higher rates of bubble coalescence and, as a consequence, lower gas-liquid interfacial areas than those observed in equivalent gas-liquid systems with no solid particles present. This supports the observations of gas absorption rate by Massimilla et al. It may be assumed that the absorption rate depends upon the interfacial area, the gas residence-time, and a mass-transfer coefficient. The last of these factors is probably higher in a gas-liquid fluidized bed because the bubble Reynolds number is higher, but the interfacial area is lower and the gas residence-time is also lower, as will be further discussed in Section V,E,3. [Pg.125]

Increase in interfacial area. The total surface area for diffusion is increased because the bubble diameter is smaller than for the free-bubbling case at the same gas flow rate hence there is a resultant increase in the overall absorption rate. The overall absorption rate will also increase when the diffusion is accompanied by simultaneous chemical reaction in the liquid phase, but the increase in surface area only has an appreciable effect when the chemical reaction rate is high the absorption rate for this case is then controlled by physical diffusion rather than by the chemical reaction rate (G6). [Pg.297]

Mass-transfer rates have been determined by measuring the absorption rate of a pure gas or of a component of a gas mixture as a function of the several operating variables involved. The basic requirement of the evaluation method is that the rate step for the physical absorption should be controlling, not the chemical reaction rate. The experimental method that has gained the widest acceptance involves the oxidation of sodium sulfite, although in some of the more recent work, the rate of carbon dioxide absorption in various media has been used to determine mass-transfer rates and interfacial areas. [Pg.300]

Westerterp et al. (W4) and Yoshida and Miura (Y3) utilized the COz-NaOH system for obtaining the interfacial area of dispersions with turbine and vaned-disk impellers. Vassilatos et al. (V5) used C02 absorption... [Pg.302]

Several possibilities exist to determine the influence of transport phenomena. The measurement of gas consumption in dependence on the interfacial area, the physical absorption coefficient, the rate of a chemical reaction following the absorption, and the concentration gradient (as the driving force of the absorption) allows decisions to be made on which regime is, in fact, in existence [40]. [Pg.266]

It is difficult to compare the performance of various spray towers since the type of spray distributor used influences the results. Data from Hixson and Scott 33 and others show that KGa varies as G70-8, and is also affected by the liquid rate. More reliable data with spray columns might be expected if the liquid were introduced in the form of individual drops through a single jet into a tube full of gas. Unfortunately the drops tend to alter in size and shape and it is not possible to get the true interfacial area very accurately. This has been investigated by Whitman et a/. 34 , who found that kG for the absorption of ammonia in water was about 0.035 kmol/s m2 (N/m2), compared with 0.00025 for the absorption of carbon dioxide in water. [Pg.675]

From the analysis given already of the diffusional nature of absorption, one of the outstanding requirements is to provide as large an interfacial area of contact as possible between the phases. For this purpose, columns similar to those used for distillation are suitable. However, whereas distillation columns are usually tall and thin absorption columns are more likely to be short and fat. In addition, equipment may be used in which gas is passed into a liquid which is agitated by a stirrer. A few special forms of units have also been used, although it is the packed column which is most frequently used for gas absorption applications. [Pg.682]

Figure 12.18 illustrates the conditions that occur during the steady operation of a countercurrent gas-liquid absorption tower. It is convenient to express the concentration of the streams in terms of moles of solute gas per mole of inert gas in the gas phase, and as moles of solute gas per mole of solute free liquid in the liquid phase. The actual area of interface between the two phases is not known, and the term a is introduced as the interfacial area per unit volume of the column. On this basis the general equation, 12.13,... [Pg.684]

The mechanism of transfer of solute from one phase to the second is one of molecular and eddy diffusion and the concepts of phase equilibrium, interfacial area, and surface renewal are all similar in principle to those met in distillation and absorption, even though, in liquid-liquid extraction, dispersion is effected by mechanical means including pumping and agitation, except in standard packed columns. [Pg.725]

The many factors outlined above which affect reaction rates suggest that considerable caution is advisable when utilising laboratory data for the design of large-scale reactors. It is essential first to locate the reaction volume or volumes. This, in the case of the absorption of CO2 into aqueous ammonia liquid discussed above, the fast reaction between dissolved CO2 and dissolved ammonia occurs in a small volume of liquid close to the gas—liquid interface. The forward reaction rate is, therefore, proportional to the gas—liquid interfacial area. The conversion of the initially fomed NH2COONH4 to (NH4)2COa by hydrolysis is a much slower reaction and takes place throughout the whole volume of the liquid phase. Similarity would therefore dictate that the interfacial area per unit liquid volume should be the same in experimental and full-scale reactors. [Pg.210]

The mass transfer coefficients considered so far - namely, kQ,kj, KQ,andKj - are defined with respect to known interfacial areas. However, the interfacial areas in equipment such as the packed column and bubble column are indefinite, and vary with operating conditions such as fluid velocities. It is for this reason that the volumetric coefficients defined with respect to the unit volume of the equipment are used, or more strictly, the unit packed volume in the packed column or the unit volume of liquid containing bubbles in the bubble column. Corresponding to /cg, Kq, and we define k a, k, a, K, /i, and K a, all of which have units of (kmol h m )/(kmol m ) - that is, (h ). Although the volumetric coefficients are often regarded as single coefficients, it is more reasonable to consider a separately from the Ar-terms, because the effective interfacial area per unit packed volume or unit volume of liquid-gas mixture a (m m ) varies not only with operating conditions such as fluid velocities but also with the types of operation, such as physical absorption, chemical absorption, and vaporization. [Pg.88]

Figure 6.5 shows values ofthe effective interfacial area thus obtained by comparing A q a values [13] for gas-phase resistance-controlled absorption and vaporization with A q values by Equation 6.54. It is seen that the effective area for absorption is considerably smaller than that for vaporization, the latter being almost equal to the wetted area. The effect of gas rates on a is negligible. [Pg.91]

The effective interfacial areas for absorption with a chemical reaction [6] in packed columns are the same as those for physical absorption, except that absorption is accompanied by rapid, second-order reactions. For absorption with a moderately fast first-order or pseudo first-order reaction, almost the entire interfacial area is effective, because the absorption rates are independent of as can be seen... [Pg.91]

Why is the effective interfacial area, a, for gas-phase controlled gas absorption much smaller than that for vaporization in packed columns (Figure 6.5)... [Pg.95]

The chemical method used to estimate the interfacial area is based on the theory of the enhancement factor for gas absorption accompanied with a chemical reaction. It is clear from Equations 6.22-6.24 that, in the range where y > 5, the gas absorption rate per unit area of gas-liquid interface becomes independent of the liquid phase mass transfer coefficient /cp, and is given by Equation 6.24. Such criteria can be met in the case of absorption with... [Pg.107]


See other pages where Absorption interfacial area is mentioned: [Pg.37]    [Pg.38]    [Pg.431]    [Pg.708]    [Pg.1359]    [Pg.1366]    [Pg.1366]    [Pg.2185]    [Pg.100]    [Pg.169]    [Pg.251]    [Pg.250]    [Pg.83]    [Pg.110]    [Pg.111]    [Pg.126]    [Pg.303]    [Pg.354]    [Pg.368]    [Pg.694]    [Pg.284]    [Pg.249]    [Pg.756]    [Pg.210]    [Pg.91]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Absorption effective interfacial areas

Interfacial area

© 2024 chempedia.info