Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption description

D.O. Hummel, Atlas of Polymer and Plastics Analysis Analytical Methods, Spectroscopy, Characteristic Absorptions, Description of Compound Classes, Vol. 2, John Wiley Sons, Inc., New York, NY (1988). [Pg.28]

Types of Effects Route Absorption Description of Effects When Effects Appear after Exposure... [Pg.446]

D7. Doscherholmen, A., McMahon, J., and Ridley, D., Inhibitory effects of eggs on vitamin BI2 absorption Description of a simple ovalbumin Co-vitamin B12 absorption test. Br. ]. Haematol. 33, 261-272 (1976). [Pg.207]

Nerve agent Types of effects Route of Absorption Description of effects... [Pg.179]

In absorption spectroscopy, the attenuation of light as it passes tln-ough a sample is measured as a function of wavelength. The attenuation is due to rovibrational or electronic transitions occurring in the sample. Mapping out the attenuation versus photon frequency gives a description of the molecule or molecules responsible for the absorption. The attenuation at a particular frequency follows the Beer-Lambert law,... [Pg.805]

The adiabatic picture developed above, based on the BO approximation, is basic to our understanding of much of chemistry and molecular physics. For example, in spectroscopy the adiabatic picture is one of well-defined spectral bands, one for each electronic state. The smicture of each band is then due to the shape of the molecule and the nuclear motions allowed by the potential surface. This is in general what is seen in absorption and photoelectron spectroscopy. There are, however, occasions when the picture breaks down, and non-adiabatic effects must be included to give a faithful description of a molecular system [160-163]. [Pg.276]

Description of Method. Copper and zinc are isolated by digesting tissue samples after extracting any fatty tissue. The concentration of copper and zinc in the supernatant are determined by atomic absorption using an air-acetylene flame. [Pg.421]

Description of Method. Quinine is an alkaloid used in treating malaria (it also is found in tonic water). It is a strongly fluorescent compound in dilute solutions of H2SO4 (f = 0.55). The excitation spectrum of quinine shows two absorption bands at 250 nm and 350 nm, and the emission spectrum shows a single emission band at 450 nm. Quinine is rapidly excreted from the body in urine and is easily determined by fluorescence following its extraction from the urine sample. [Pg.431]

Description of Method. The water-soluble vitamins Bi (thiamine hydrochloride), B2 (riboflavin), B3 (niacinamide), and Be (pyridoxine hydrochloride) may be determined by CZE using a pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer or by MEKC using the same buffer with the addition of sodium dodecyl-sulfate. Detection Is by UV absorption at 200 nm. An Internal standard of o-ethoxybenzamide Is used to standardize the method. [Pg.607]

We are explicitly excluding absorption effects Light-absorbing pollutants modify this description. [Pg.677]

Normal modes of vibration, with their corresponding normal coordinates, are very satisfactory in describing the low-lying vibrational levels, usually those with u = 1 or 2, which can be investigated by traditional infrared absorption or Raman spectroscopy. For certain types of vibration, particularly stretching vibrations involving more than one symmetrically equivalent terminal atom, this description becomes less satisfactory as v increases. [Pg.187]

Transmission, Absorption, and Beer s Law. The majority of infrared spectrometry is stiU done by the classic method of transmission spectrometry the intensity of an infrared beam passing completely through a sample is measured. The standard description of how much radiation passes through the sample is that of Beet s law (or the Bouguer-Beer-Lambertlaw) ... [Pg.197]

The emissivity, S, is the ratio of the radiant emittance of a body to that of a blackbody at the same temperature. Kirchhoff s law requires that a = e for aH bodies at thermal equHibrium. For a blackbody, a = e = 1. Near room temperature, most clean metals have emissivities below 0.1, and most nonmetals have emissivities above 0.9. This description is of the spectraHy integrated (or total) absorptivity, reflectivity, transmissivity, and emissivity. These terms can also be defined as spectral properties, functions of wavelength or wavenumber, and the relations hold for the spectral properties as weH (71,74—76). [Pg.202]

Eig. 3. Absorption spectra of dyes (12) showing local electron transition (28). See Eig. 2 for curve descriptions. [Pg.492]

Materials characterization techniques, ie, atomic and molecular identification and analysis, ate discussed ia articles the tides of which, for the most part, are descriptive of the analytical method. For example, both iaftared (it) and near iaftared analysis (nira) are described ia Infrared and raman SPECTROSCOPY. Nucleai magaetic resoaance (nmr) and electron spia resonance (esr) are discussed ia Magnetic spin resonance. Ultraviolet (uv) and visible (vis), absorption and emission, as well as Raman spectroscopy, circular dichroism (cd), etc are discussed ia Spectroscopy (see also Chemiluminescence Electho-analytical techniques It unoassay Mass specthot thy Microscopy Microwave technology Plasma technology and X-ray technology). [Pg.393]

Irreversible processes are mainly appHed for the separation of heavy stable isotopes, where the separation factors of the more reversible methods, eg, distillation, absorption, or chemical exchange, are so low that the diffusion separation methods become economically more attractive. Although appHcation of these processes is presented in terms of isotope separation, the results are equally vaUd for the description of separation processes for any ideal mixture of very similar constituents such as close-cut petroleum fractions, members of a homologous series of organic compounds, isomeric chemical compounds, or biological materials. [Pg.76]

Basically, a gas absorption tower is a unit in which the desirable light ends components are recovered from the gas feed by dissolving them in a liquid passing through the tower countercurrently to the gas. The liquid absorbent is called lean, oil, and it usually consists of a hydrocarbon fraction in the gasoline boiling range. After the absorption step, the liquid which now contains the desired constituents in solution is referred to as fat oil. A similarly descriptive nomenclature is applied to the gas, which is referred to as wet gas when it enters the tower and as dry gas when it leaves the absorber. [Pg.92]

Lambert-Beer law The mathematical description of the attenuation of a light beam by absorption and scattering by dust particles in the airstream. [Pg.1454]

The practical development of plant sterol drugs as cholesterol-lowering agents will depend both on structural features of the sterols themselves and on the form of the administered agent. For example, the unsaturated sterol sitosterol is poorly absorbed in the human intestine, whereas sitostanol, the saturated analog, is almost totally unabsorbable. In addition, there is evidence that plant sterols administered in a soluble, micellar form (see page 261 for a description of micelles) are more effective in blocking cholesterol absorption than plant sterols administered in a solid, crystalline form. [Pg.256]

A description of the absorption cycle of Figure 11-19 is used by permission from Carrier Corporation, Bui. 521-606 ... [Pg.306]

From the description thus far, you might expect all 1H nuclei in a molecule to absorb energy at the same frequency and all 13C nuclei to absorb at the same frequency. If so, we would observe only a single NMR absorption band in the H or 13C spectrum of a molecule, a situation that would be of little use. In fact, the absorption frequency is not the same for all 4H or all 13C nuclei. [Pg.442]


See other pages where Absorption description is mentioned: [Pg.288]    [Pg.222]    [Pg.312]    [Pg.1325]    [Pg.1591]    [Pg.299]    [Pg.71]    [Pg.369]    [Pg.447]    [Pg.470]    [Pg.53]    [Pg.218]    [Pg.452]    [Pg.201]    [Pg.332]    [Pg.406]    [Pg.399]    [Pg.19]    [Pg.414]    [Pg.143]    [Pg.251]    [Pg.208]    [Pg.305]    [Pg.148]    [Pg.509]    [Pg.165]    [Pg.177]   
See also in sourсe #XX -- [ Pg.236 , Pg.240 ]




SEARCH



© 2024 chempedia.info