Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A-Cyanoacetate

A major type of reaction in this class is the cyclization of 4-amino- or 4-halo-pyrimidines carrying 5-cyanoethyl or 5-ethoxycarbonylethyl groups, which cyclize to 7-amino or 7-oxo derivatives of 5,6-dihydropyrido[2,3- f]pyrimidine, e.g. (131)->(63). The intermediates may sometimes be prepared by reaction of 4(6)-aminopyrimidines with acrylonitrile, or even via a pyrimidine ring synthesis from an amidine and a cyanoacetic ester or malononitrile derivative, e.g. (132) -> (133) (7lJOC2 85, 72BCJ1127). [Pg.217]

Fig. 30 Asymmetric aza-Claisen rearrangement of (Z)-configured trifluoroacetimidates 44 3.1.2 Bispalladium-Catalyzed Michael-Addition of a-Cyanoacetates... Fig. 30 Asymmetric aza-Claisen rearrangement of (Z)-configured trifluoroacetimidates 44 3.1.2 Bispalladium-Catalyzed Michael-Addition of a-Cyanoacetates...
Ferrocen-l,l -diylbismetallacycles are conceptually attractive for the development of bimetal-catalyzed processes for one particular reason the distance between the reactive centers in a coordinated electrophile and a coordinated nucleophile is self-adjustable for specific tasks, because the activation energy for Cp ligand rotation is very low. In 2008, Peters and Jautze reported the application of the bis-palladacycle complex 56a to the enantioselective conjugate addition of a-cyanoacetates to enones (Fig. 31) [74—76] based on the idea that a soft bimetallic complex capable of simultaneously activating both Michael donor and acceptor would not only lead to superior catalytic activity, but also to an enhanced level of stereocontrol due to a highly organized transition state [77]. An a-cyanoacetate should be activated by enolization promoted by coordination of the nitrile moiety to one Pd(II)-center, while the enone should be activated as an electrophile by coordination of the olefinic double bond to the carbophilic Lewis acid [78],... [Pg.159]

N-(4-hydroxycyclohexyl)-3-mercapto-3-cyano-4-arylazetidine-2-ones were synthesized from N-(4-hydroxycyclohexyl)aryldiimine by reaction with ethyl a-mercapto-a-cyanoacetate on basic alumina under microwaves. The reaction time was reduced from hours to minutes in comparison to conventional heating and, moreover, the yield was improved [121]. [Pg.336]

A dodecakis(NCN-Pdn) catalyst, synthesized in the group of Van Koten (Figure 4.24), was applied in the a continuous double Michael addition reaction between methyl vinyl ketone (MVK) and ethyl a-cyanoacetate.[34] The reaction was performed in the deadend reactor discussed in paragraph 4.2.1. Two catalytic runs were performed differing in the amount of catalyst and in the applied flow (both increased by a factor 2.5). Both runs showed high productivity for more than 24 h (Figure 4.25). [Pg.89]

Unlike the corresponding reaction of p-keto esters with a,p-unsaturated aldehydes, which produce Michael adducts, a-cyanoacetic esters undergo the aldol reaction forming a-cyanodienoic esters [17]. [Pg.262]

P-keto esters with a,p-unsaturated aldehydes liquidrliquid two-phase conditions [20] but, in contrast, under analogous conditions a-cyanoacetic esters produce aldol adducts with a,p-unsaturated aldehydes [20], Ethyl acetoacetate undergoes a catalysed Michael reaction addition with trans but-2-en-l,4-diones the products are generally insufficiently stable for isolation, but can be converted into furans [21 ]. [Pg.275]

The yields of reaction products from thermal nucleophilic substitution reactions in DMSO of 0- and p-nitrohalobenzenes (Zhang et al. 1993) or p-dinitrobenzene (Liu et al. 2002) with the sodium salt of ethyl a-cyanoacetate were found to be markedly diminished from the addition of small amounts of strong electron acceptors such as nitrobenzenes. At the same time, little or no diminution effects on the yields of the reaction products were observed from the addition of radical traps such as nitroxyls. These results are consistent with the conclusion that such reactions proceed via a nonchain radical nucleophilic substitution mechanism (Scheme 4.26). [Pg.231]

The efficiency with which modified Cinchona alkaloids catalyze conjugate additions of a-substituted a-cyanoacetates highlights the nitrile group s stereoselective role with the catalyst. Deng et al. [60] utilized this observation to develop a one-step construction of chiral acyclic adducts that have non-adjacent, 1,3-tertiary-quatemary stereocenters. Based on their mechanistic studies and proposed transition state model, the bifimctional nature of the quinoline C(6 )-OH Cinchona alkaloids could induce a tandem conjugate addition-protonation reaction to create the tertiary and quaternary stereocenters in an enantioselective and diastereoselective manner (Scheme 18). [Pg.160]

Following work on Michael addition of triazoles to nitro-olefins (discussed in Sect. 2.5), bifunctional chiral thiourea catalysts were used in the addition of triazoles to chalcones [83]. The catalytic system was applicable to enones bearing aromatic groups of varying electronic natures to provide good yields and moderate selectivity. a-Cyanoacetates [84] were also applied in Michael addition to chalcones under similar catalytic conditions (Scheme 33). [Pg.170]

Under the action of phenylhydrazine or 5-amino-3-phenylpyrazole on pyran 59b only benzaldehyde phenylhydrazone 271 is formed, probably, as the result of pyran retro-cleavage (82M53). A similar reaction with malononitrile, leading to pyran 59a, a product of formal displacement of a cyanoacetic moiety, possibly results from a similar cleavage (82M53) (Scheme 108). [Pg.236]

Scheme 6.69 Products obtained from the 12-catalyzed asymmetric Michael addition of malononitrile, nitromethane, and methyl a-cyanoacetate to N-cinnamoylbenzamide derivatives (acylic imides) and 12-catalyzed derivatization of the Michael adduct. Scheme 6.69 Products obtained from the 12-catalyzed asymmetric Michael addition of malononitrile, nitromethane, and methyl a-cyanoacetate to N-cinnamoylbenzamide derivatives (acylic imides) and 12-catalyzed derivatization of the Michael adduct.
The addition of nitromethane (56% yield/168h 87% ee) or methyl a-cyanoacetate (94% yield/52h 82% ee) as alternative CH-acidic methylene compounds required increased reaction temperatures (60 to 80 °C) to furnish the adducts 7 and 8. As exemplarily depicted in Scheme 6.69 for benzylic alcohol thiourea 12 catalyzes the transformation of the obtained malononitrile Michael products to the respective carboxyhc acid derivatives (89% yield/88h). This method of derivatization also described for methanol (87% yield/24h rt), benzyl amine (77% yield/3h rt), and N,0-dimethylhydroxyamine (75% yield/20h 60°C) as nucleophiles was reported to be feasible as a one-pot strategy without isolation of the initially formed Michael adduct [222]. [Pg.216]

In 2007, Chen and co-workers reported the 122-catalyzed (10mol% loading) enantioselective Michael addition [149-152] of ethyl a-cyanoacetate to various electron-rich and electron-deficient trans-chalcones [283]. The reaction was performed for a broad spectrum of chalcones and gave the corresponding adducts in yields of 80-95% and in ee values of 83-95%, but at low sy /a ti-diastereoselectiv-ities as shown for representative products 1-8 in Scheme 6.125. [Pg.268]

Transformation of both the ester and nitrile derivatives 726 or 727 into pyrano[2,3-t7 pyridazines 728 or 729, respectively, by treatment with dilute HCl at room temperature involved nucleophilic displacement of the morpholine group by the hydroxyl group with an acidic hydrolysis followed by intramolecular iminolactonization and then hydrolysis of the formed imino group to a carbonyl group. Compounds 726 and 727 were prepared by Vilsmeier-Haack formylation of 2-methyl-5-morpholino-3(2/7)-pyridazinone 724 followed by condensation of the resulting product 725 with either ethyl a-cyanoacetate or malononitrile in EtOH (Scheme 34) <1994H(37)171>. [Pg.835]

In another synthesis using a preformed pyridine derivative a cyanoacetic acid ester is condensed in a Guareschi-type reaction with an a-substituted /3-keto carboxylic acid ester and an amine to give a hydroxypyridone (18 Scheme 3). These compounds are suitable precursors for an acid catalyzed cyclization to furo[2,3-6]pyridine-6-ones (19). N-Substituted derivatives may also be prepared by this route (64AP754). The aqueous solutions of these furopyridines show an intensive blue fluorescence. [Pg.976]

Scheme 9 C2 Alkylation of a Cyanoacetate and Its Incorporation into a PMRI-Peptidet5l... Scheme 9 C2 Alkylation of a Cyanoacetate and Its Incorporation into a PMRI-Peptidet5l...
Some closely related chemistry has more recently been reported (137a). The complex HFeCH2CN(dmpe)2 dissolved in CH3CN rapidly takes up C02 to form a cyanoacetate complex. Treatment with Br2 or I2 yields free cyanoacetic acid, confirmed by treatment with CH3OH/BF3 to yield NCCH2COOMe. [Pg.133]

Keywords aldimine, ethyl-a-mercaptoacetate, ethyl-a-cyanoacetate, basic alumina, microwave irradiation, /Mactams... [Pg.123]

The highly enantioselective alkylation of a-substituted a-cyanoacetates was achieved using chiral phase-transfer catalysts of type le and lh to afford a,a-disubstituted a-cyanoacetates possessing an asymmetric quaternary carbon center with high enantioselectivity, as shown in Table 5.9 [34]. [Pg.98]

Asymmetric conjugate addition of a-substituted-oc-cyanoacetates 77 to acetylenic esters under phase-transfer conditions is somewhat of a challenge, because of the difficulty encountered in controlling the stereochemistry of the product. In addition, despite numerous examples of the conjugate additions to alkenoic esters, no successful asymmetric conjugate additions to acetylenic esters have been reported to date. In this context, Maruoka and coworkers recently developed a new morpholine-derived phase-transfer catalyst (S)-76 and applied it to the asymmetric conjugate additions of a-alkyl-a-cyanoacetates 77 to acetylenic esters, as indicated in Table 5.11 [40], In this asymmetric transformation, an all-carbon quaternary stereocenter can be constructed with a high enantiomeric purity. [Pg.104]

A mechanism has been proposed for the syn-S allylic substitution of a-cyanoacetals with alkyllithium reagents.14 The matched (9) and mismatched (11) substrates gave different products [98% (10) and 85% (12), respectively] when treated with lithium (g) di-f-butyl biphenylide (LiDBB) in THF at -78 °C as shown in Schemes 6 and 7. The spiroether effect is the controlling factor in determining the products. [Pg.235]

The enantio-determining step of nucleophilic additions to a-bromo-a,y -unsaturated ketones is mechanistically similar to those of nucleophilic epoxidations of enones, and asymmetry has also been induced in these processes using chiral phase-transfer catalysts [20]. The addition of the enolate of benzyl a-cyanoacetate to the enone 31, catalysed by the chiral ammonium salt 32, was highly diastereoselective and gave the cyclopropane 33 in 83% ee (Scheme 12). Good enantiomeric excesses have also been observed in reactions involving the anions of nitromethane and an a-cyanosulfone [20]. [Pg.131]

The a-cyanoacetates 12 are optimal substrates for the approach outlined in Scheme 2.26 due to the low pKa of the a-proton. It has been reported that the quinidine-derived alkaloid /fisocupridine (/ -ICD) can catalyze the direct a-amination of a-cyanoacetates 12 (Eq. 4) and /fdicarbonyl compounds [10], probably by an enolate having a chiral /MCD-H+ counterion as the intermediate. The a-amination of a-cyanoacetates 12 with di-tert-butyl azodicarboxylate 2c is an efficient process that proceeds with only 0.5 mol% of /MCD. The expected products 13, having a stereogenic quaternary carbon center, were isolated in excellent yields and with excellent levels of enantioselectivity independently by the nature of the aryl-substituent in the a-cyanoacetates, while the / -dicarbonyl compounds give slightly lower enantioselectivty (83-90% ee). [Pg.64]

Further developments by Deng et al. on the a-amination of a-cyanoacetates 12 (Eq. 4) showed that G -OH-modified cinchona alkaloids, which are accessible from either quinine or quinidine, were also effective catalysts for the reaction leading to optically active products in 71-99% yield and up to 99% ee [11]. [Pg.64]


See other pages where A-Cyanoacetate is mentioned: [Pg.471]    [Pg.290]    [Pg.98]    [Pg.87]    [Pg.28]    [Pg.262]    [Pg.175]    [Pg.157]    [Pg.157]    [Pg.158]    [Pg.158]    [Pg.160]    [Pg.95]    [Pg.290]    [Pg.347]    [Pg.330]    [Pg.99]    [Pg.64]    [Pg.206]    [Pg.474]   
See also in sourсe #XX -- [ Pg.106 , Pg.135 ]




SEARCH



2- cyanoacetate

A - cyanoacetic

A-Cyanoacetals

A-Cyanoacetates

Cyanoacetates

© 2024 chempedia.info