Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc chloride condensations

In practice a large part of the carbon produced by the reaction (2) remains in the container. A part of the metallic zinc is vaporized at 907 0 and the reaction (3) occurs with a small flame. The vapours of the zinc chloride and carbon monoxide mix together uniformly and jet out into the air through the hole where they are cooled. In this case the zinc chloride condenses as A-substance and the carbon monoxide prevents the zinc chloride particles from cohesion acting as the B-substance. The zinc oxide particles are not so visible, but they easily absorb the moisture in the air and become small liquid particles which are visible as a dense white smoke. [Pg.80]

Dimethylaniline, C6H6.N(CH3)2, is an oil, which solidifies when cooled by a freezing-mixture, and boils at 192°. It is manufactured by heating aniline hydrochloride with methyl alcohol under pressure. The hydrogen atom of the amine which is in the position para to the N(CH3)2 group is very reactive. As a consequence, dimethylaniline forms condensation-products when treated with a variety of compounds. For example, when the amine and benzoic aldehyde, CeHs.CHO, are heated in the presence of zinc chloride, condensation takes place —... [Pg.460]

Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

Conversion of (3- into a-glucose penta-acetate. Add 0-5 g. of anhydrous zinc chloride rapidly to 25 ml. of acetic anhydride in a 200 ml. round-bottomed flask, attach a reflux condenser, and heat on a boiling water bath for 5-10 minutes to dissolve the solid. Then add 5 g. of the pure P glucose penta-acetate, and heat on a water bath for 30 minutes. Pour the hot solution into 250 ml. of ice water, and stir vigorously in order to induce crystaUisation of the oily drops. Filter the solid at the pump, wash with cold water, and recrystaUise from methylated spirit or from methyl alcohol. Pure a-glucose penta-acetate, m.p. 110-111°, will be obtained. Confirm its identity by a mixed m.p. determination. [Pg.452]

Into a 1-litre three-necked flask, equipped with a reflux (double surface) condenser, a mechanical stirrer (preferably of the Hershberg type. Fig. II, 7, 8) and a gas lead-in tube extending to near the bottom of the flask, place 200 g. (227 ml.) of dry benzene, 20 g. of paraformaldehyde (1) and 20 g. of finely-pulverised, anhydrous zinc chloride. Support the flask on a water bath so arranged that the level of the water in it is about... [Pg.539]

By the condensation of a nitrile with a phenol or phenol ether in the presence of zinc chloride and hydrogen chloride a hydroxyaryl- or alkoxyaryl-ketone is produced. The procedure is termed the Hoesch reaction and is clearly an extension of the Gattermann aldehyde reaction (Section IV,121). The reaction gives the best results with polyhydric phenols and their ethers with simple monohydric phenols the imino ester hydrochloride is frequently the sole product for example ... [Pg.727]

An important general method of preparing indoles, known as the Fischer Indole synthesis, consists in heating the phenylhydrazone of an aldehyde, ketone or keto-acld in the presence of a catalyst such as zinc chloride, hydrochloric acid or glacial acetic acid. Thus acrtophenone phenylhydrazone (I) gives 2-phenyllndole (I V). The synthesis involves an intramolecular condensation with the elimination of ammonia. The following is a plausible mechanism of the reaction ... [Pg.851]

Phenol condenses with phthahc anhydride in the presence of concentrated sulphuric acid or anhydrous zinc chloride to yield the colourless phenolphthalein as the main product. When dilute caustic alkah is added to an alcoholic solution of phenolphthalein, an intense red colouration is produced. The alkali opens the lactone ring in phenolphthalein and forms a salt at one phenolic group. The reaction may be represented in steps, with the formation of a h3q)othetical unstable Intermediate that changes to a coloured ion. The colour is probably due to resonance which places the negative charge on either of the two equivalent oxygen atoms. With excess of concentrated caustic alkali, the first red colour disappears this is due to the production of the carbinol and attendant salt formation, rendering resonance impossible. The various reactions may be represented as follows ... [Pg.984]

Fluorescein is obtained by condensing phthahc anhydride (1 mol) with resorcinol (2 mols) in the presence of anhydrous zinc chloride. The tetra-bromo derivative, readily prepared by the addition of the calculated quantity of bromine, is eosin. [Pg.985]

By condensing o sulphobenzoic anhydride with phenol in the presence of anhydrous zinc chloride, phenolsulphonephthalein (phenol red) is formed. Tetrabromination of the latter afibrds tetrabromophenolsulphonephthalein (bromophenol blue) ... [Pg.989]

Ohta (344) prepared 2,4-dimethylthiazole (10), Rj=R2 = Me, Rj H, in fairly low yield by condensing a-mercaptoacetone with acetamide in the presence of anhydrous zinc chloride. [Pg.293]

Alkylthiazoles heated with an aromatic aldehyde in the presence of zinc chloride undergo condensation. For example, 2-methylthiazole gives... [Pg.392]

Fig. 3J0 Plot of cumulative pore volume against logarithm of r the effective pore radius, (o) For charcoal AY4 A by mercury intrusion O by capillary condensation of benzene, (b) For zinc chloride carbon AYS A by mercury intrusion O by capillary condensation of benzene x by capillary condensation of benzene, after mercury intrusion followed by distillation of mercury under vacuum at temperature rising to 350°C. (Courtesy... Fig. 3J0 Plot of cumulative pore volume against logarithm of r the effective pore radius, (o) For charcoal AY4 A by mercury intrusion O by capillary condensation of benzene, (b) For zinc chloride carbon AYS A by mercury intrusion O by capillary condensation of benzene x by capillary condensation of benzene, after mercury intrusion followed by distillation of mercury under vacuum at temperature rising to 350°C. (Courtesy...
Acetic anhydride adds to acetaldehyde in the presence of dilute acid to form ethyUdene diacetate [542-10-9], boron fluoride also catalyzes the reaction (78). Ethyfldene diacetate decomposes to the anhydride and aldehyde at temperatures of 220—268°C and initial pressures of 14.6—21.3 kPa (110—160 mm Hg) (79), or upon heating to 150°C in the presence of a zinc chloride catalyst (80). Acetone (qv) [67-64-1] has been prepared in 90% yield by heating an aqueous solution of acetaldehyde to 410°C in the presence of a catalyst (81). Active methylene groups condense acetaldehyde. The reaction of isobutfyene/715-11-7] and aqueous solutions of acetaldehyde in the presence of 1—2% sulfuric acid yields alkyl-y -dioxanes 2,4,4,6-tetramethyl-y -dioxane [5182-37-6] is produced in yields up to 90% (82). [Pg.51]

Resorcinol Derivatives. Aminophenols (qv) are important intermediates for the syntheses of dyes or active molecules for agrochemistry and pharmacy. Syntheses have been described involving resorcinol reacting with amines (91). For these reactions, a number of catalysts have been used / -toluene sulfonic acid (92), zinc chloride (93), zeoHtes and clays (94), and oxides supported on siUca (95). In particular, catalysts performing the condensation of ammonia with resorcinol have been described gadolinium oxide on siUca (96), nickel, or zinc phosphates (97), and iron phosphate (98). [Pg.491]

Dihydroxybenzophenones are used for the syntheses of dyes, polymers, and medicines. They are prepared by the condensation of resorcinol with benzoic acids. Catalysts used for this transformation are sulfonic resins (99), boron trifluoride (100), or zinc chloride in the presence of POCl (101). [Pg.491]

Alkyl Isoquinolines. Coal tar contains small amounts of l-methylisoquinoline [1721-93-3] 3-methylisoquinoline [1125-80-0] and 1,3-dimetliylisoquinoline [1721-94-4J. The 1- and 3-methyl groups are more reactive than others in the isoquinoline nucleus and readily oxidize with selenium dioxide to form the corresponding isoquinoline aldehydes (174). These compounds can also be obtained by the hydrolysis of the dihalomethyl group. The 1- and 3-methyhsoquinolines condense with benzaldehyde in the presence of zinc chloride or acetic anhydride to produce 1- and 3-styryhsoquinolines. Radicals formed by decarboxylation of carboxyUc acids react to produce 1-aIkyhsoquinolines. [Pg.398]

The central carbon atom is derived from an aromatic aldehyde or a substance capable of generating an aldehyde during the course of the condensation. Malachite green is prepared by heating benzaldehyde under reflux with a slight excess of dimethyl aniline in aqueous acid (Fig. 2). The reaction mass is made alkaline and the excess dimethylaniline is removed by steam distillation. The resulting leuco base is oxidized with freshly prepared lead dioxide to the carbinol base, and the lead is removed by precipitation as the sulfate. Subsequent treatment of the carbinol base with acid produces the dye, which can be isolated as the chloride, the oxalate [2437-29-8] or the zinc chloride double salt [79118-82-4]. [Pg.270]

In the ketone method, the central carbon atom is derived from phosgene (qv). A diarylketone is prepared from phosgene and a tertiary arylamine and then condenses with another mole of a tertiary arylamine (same or different) in the presence of phosphoms oxychloride or zinc chloride. The dye is produced directly without an oxidation step. Thus, ethyl violet [2390-59-2] Cl Basic Violet 4 (15), is prepared from 4,4 -bis(diethylamino)benzophenone with diethylaruline in the presence of phosphoms oxychloride. This reaction is very useful for the preparation of unsymmetrical dyes. Condensation of 4,4 -bis(dimethylamino)benzophenone [90-94-8] (Michler s ketone) with AJ-phenjl-l-naphthylamine gives the Victoria Blue B [2580-56-5] Cl Basic Blue 26, which is used for coloring paper and producing ballpoint pen pastes and inks. [Pg.271]

The manufacture of crystal violet (1), however, is a special case which does not involve the isolation of the intermediate Michler s ketone (Fig. 3). Thus, phosgene is treated with excess dimethyl aniline in the presence of zinc chloride. Under these conditions, the highly reactive intermediate "ketone dichloride" is formed in good yield this intermediate further condenses with another mole of dimethyl aniline to give the dye. [Pg.271]

Liquid mixtures of methanol and hydrochloric acid slowly yield methyl chloride even at 0°C (20,21), The typical process is carried out by contacting the alcohol with hydrochloric acid at 70 to 160°C and 0.1—1 MPa (15—150 psig) in the presence of a catalyst such as zinc chloride, quaternary amines (18,19,22), or with no catalyst at aH (23,24). TypicaHy 0.5 to 3% of the methanol is converted to dimethyl ether. Product methyl chloride is taken out of the reactor as a vapor and is cooled to condense as much of the water vapor and HCl as possible. Dimethyl ether and the residual water is then removed and the finished methyl chloride is condensed. [Pg.514]

Side chain reactivity is also enhanced and is typified by the difference in reactivity of 2-methylpyrazine and 2-methylpyrazine 1,4-dioxide towards anion formation and subsequent condensation reactions. 2-Methylpyrazine undergoes condensation with benzal-dehyde at 180 °C, with zinc chloride catalysis, to yield the styrylpyrazine (58), whereas the corresponding reaction of 2-methylpyrazine 1,4-dioxide proceeds at 25 °C under base catalysis (67KGS419). [Pg.173]

The difficulties encountered in the synthesis of 2-alkyl- and 2-aryl-substituted selenazoles lie principally in the preparation of the corresponding selenoamides. In this respect, a method is worthy of note in which the use of selenoamides is dispensed with. For this, a nitrile, a hydrogen selenide, and an a-halogenoketone are reacted together in the presence of a condensation catalyst. Phosphorus oxychloride, alone or mixed with zinc chloride or phosphorus trichloride, is specially suitable. The yields of the corresponding 2-alkylseIenazoles are up to a maximum of 25%,... [Pg.345]


See other pages where Zinc chloride condensations is mentioned: [Pg.563]    [Pg.563]    [Pg.141]    [Pg.143]    [Pg.230]    [Pg.299]    [Pg.384]    [Pg.451]    [Pg.534]    [Pg.690]    [Pg.829]    [Pg.149]    [Pg.193]    [Pg.403]    [Pg.401]    [Pg.76]    [Pg.116]    [Pg.89]    [Pg.156]    [Pg.40]    [Pg.19]    [Pg.62]    [Pg.458]    [Pg.495]    [Pg.530]    [Pg.297]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 , Pg.125 , Pg.145 , Pg.146 , Pg.149 , Pg.150 , Pg.163 ]




SEARCH



Zinc chloride

© 2024 chempedia.info