Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Yellowing mechanism

Polycarbonate Good/Excellent Yellows. Mechanical properties not greatly... [Pg.405]

Polycarbonates Good Yellow - mechanical properties unchanged... [Pg.257]

Equip a 1-litre three-necked flask with a powerful mechanical stirrer, a separatory funnel with stem extending to the bottom of the flask, and a thermometer. Cool the flask in a mixture of ice and salt. Place a solution of 95 g. of A.R. sodium nitrite in 375 ml. of water in the flask and stir. When the temperature has fallen to 0° (or slightly below) introduce slowly from the separatory funnel a mixture of 25 ml. of water, 62 5 g. (34 ml.) of concentrated sulphuric acid and 110 g. (135 ml.) of n-amyl alcohol, which has previously been cooled to 0°. The rate of addition must be controlled so that the temperature is maintained at 1° the addition takes 45-60 minutes. AUow the mixture to stand for 1 5 hours and then filter from the precipitated sodium sulphate (1). Separate the upper yellow n-amyl nitrite layer, wash it with a solution containing 1 g. of sodium bicarbonate and 12 5 g. of sodium chloride in 50 ml. of water, and dry it with 5-7 g. of anhydrous magnesium sulphate. The resulting crude n-amyl nitrite (107 g.) is satisfactory for many purposes (2). Upon distillation, it passes over largely at 104° with negligible decomposition. The b.p. under reduced pressure is 29°/40 mm. [Pg.306]

Add 25 g. of finely-powdered, dry acetanilide to 25 ml. of glacial acetic acid contained in a 500 ml. beaker introduce into the well-stirred mixture 92 g. (50 ml.) of concentrated sulphuric acid. The mixture becomes warm and a clear solution results. Surround the beaker with a freezing mixture of ice and salt, and stir the solution mechanically. Support a separatory funnel, containing a cold mixture of 15 -5 g. (11 ml.) of concentrated nitric acid and 12 -5 g. (7 ml.) of concentrated sulphuric acid, over the beaker. When the temperature of the solution falls to 0-2°, run in the acid mixture gradually while the temperature is maintained below 10°. After all the mixed acid has been added, remove the beaker from the freezing mixture, and allow it to stand at room temperature for 1 hour. Pour the reaction mixture on to 250 g. of crushed ice (or into 500 ml. of cold water), whereby the crude nitroacetanilide is at once precipitated. Allow to stand for 15 minutes, filter with suction on a Buchner funnel, wash it thoroughly with cold water until free from acids (test the wash water), and drain well. Recrystallise the pale yellow product from alcohol or methylated spirit (see Section IV,12 for experimental details), filter at the pump, wash with a httle cold alcohol, and dry in the air upon filter paper. [The yellow o-nitroacetanihde remains in the filtrate.] The yield of p-nitroacetanihde, a colourless crystalline sohd of m.p. 214°, is 20 g. [Pg.581]

Place 84 g. of iron filings and 340 ml. of water in a 1 - 5 or 2-litre bolt-head flask equipped with a mechanical stirrer. Heat the mixture to boiling, stir mechanically, and add the sodium m-nitrobenzenesulphonate in small portions during 1 hour. After each addition the mixture foams extensively a wet cloth should be applied to the neck of the flask if the mixture tends to froth over the sides. Replace from time to time the water which has evaporated so that the volume is approximately constant. When all the sodium salt has been introduced, boU the mixture for 20 minutes. Place a small drop of the suspension upon filter paper and observe the colour of the spot it should be a pale brown but not deep brown or deep yellow. If it is not appreciably coloured, add anhydrous sodium carbonate cautiously, stirring the mixture, until red litmus paper is turned blue and a test drop upon filter paper is not blackened by sodium sulphide solution. Filter at the pump and wash well with hot water. Concentrate the filtrate to about 200 ml., acidify with concentrated hydrochloric acid to Congo red, and allow to cool. Filter off the metanilic acid and dry upon filter paper. A further small quantity may be obtained by concentrating the mother liquid. The yield is 55 g. [Pg.589]

Dissolve 200 g. of sodium nitrite in 400 ml. of water in a 2-litre beaker provided with an efficient mechanical stirrer, and add 40 g. of copper powder (either the precipitated powder or copper bronze which has been washed with a little ether). Suspend the fluoborate in about 200 ml. of water and add it slowly to the well-stirred mixture. Add 4-5 ml. of ether from time to time to break the froth. The reaction is complete when all the diazonium compound has been added. Transfer the mixture to a large flask and steam distil until no more solid passes over (about 5 litres of distillate). Filter off" the crystalline solid in the steam distillate and dry upon filter paper in the air this o-dinitrobenzene (very pale yellow crystals) has m.p. 116° (t.c., is practically pure) and weighs 29 g. It may be recrystallised from alcohol the recrystallised solid melts at 116-5°. [Pg.613]

Make a thin paste of 21 5 g. of finely-powdered o-tolidine (a commercial product) with 300 ml. of water in a 1-litre beaker, add 25 g. (21 ml.) of concentrated hydrochloric acid, and warm until dissolved. Cool the solution to 10° with ice, stir mechanically, and add a further 25 g. (21 ml.) of concentrated hydrochloric acid (1) partial separation of o tolidine dihydrochloride will occur. Add a solution of 15 g, of sodium nitrite in 30 ml. of water as rapidly as possible, but keep the temperature below 15° a slight excess of nitrous acid is not harmful in this preparation. Add the clear, orange tetrazonium solution to 175 ml. of 30 per cent, hypophosphorous acid (2), and allow the mixture to stand, loosely stoppered, at room temperature for 16-18 hours. Transfer to a separatory funnel, and remove the upper red oily layer. Extract the aqueous layer with 50 ml, of benzene. Dry the combined upper layer and benzene extract with anhydrous magnesium sulphate, and remove the benzene by distillation (compare Fig. II, 13, 4) from a Widmer or similar flask (Figs. II, 24, 3-5) heat in an oil bath to 150° to ensure the removal of the last traces of benzene. Distil the residue at ca. 3 mm. pressure and a temperature of 155°. Collect the 3 3 -dimethyldiphenyl as a pale yellow liquid at 114-115°/3 mm. raise the bath temperature to about 170° when the temperature of the thermometer in the flask commences to fall. The yield is 14 g. [Pg.616]

Dinitroaniline from 3 5-dinItrobenzoic acid. Place a solution of 50 g. of 3 5-dinitrobenzoic acid (Section IV, 168) in 90 ml. of 10 per cent, oleum and 20 ml. of concentrated sulphuric acid in a 1-litre three necked flask equipped with a reflux condenser, mechanical stirrer, adropping funnel, and thermometer (FUME CUPBOARD ). Add 100 ml. of clJoroform and raise the temperature to 45°. Stir rapidly and add 17 -5g. of sodium azide in small portions whilst maintaining the temperature at 35-45°. The reaction is accompanied hy foaming, which usually commences after about 3 g. of sodium azide has been introduced. After all the sodium azide has been added raise the temperature so that the chloroform refluxes vigorously and maintain this temperature for 3 hours. Then cool the reaction mixture, pour it cautiously on to 500 g. of crushed ice, and dilute with 3 litres of water. After 1 hour, separate the yellow solid by filtration at the pump, wash well with water and dry at 100°. The yield of 3 5-dinitroaniline, m.p. 162-163°, is 39 g. The m.p. is unaffected by recrystallisation from dilute alcohol. [Pg.919]

Amino-3 5-diiodobenzoic acid. In a 2 litre beaker, provided with a mechanical stirrer, dissolve 10 g. of pure p-aminobenzoic acid, m.p. 192° (Section IX,5) in 450 ml. of warm (75°) 12 -5 per cent, hydrochloric acid. Add a solution of 48 g. of iodine monochloride (1) in 40 ml. of 25 per cent, hydrochloric acid and stir the mixture for one minute during this time a yellow precipitate commences to appear. Dilute the reaction mixtiue with 1 litre of water whereupon a copious precipitate is deposited. Raise the temperature of the well-stirred mixture gradually and maintain it at 90° for 15 minutes. Allow to cool to room tempera-tiue, filter, wash thoroughly with water and dry in the air the yield of crude acid is 24 g. Purify the product by dissolving it in dilute sodium hydroxide solution and precipitate with dilute hydrochloric acid the yield of air-dried 4-amino-3 5-diiodobenzoic acid, m.p. >350°, is 23 g. [Pg.973]

In a 500 ml. three-necked flask, fitted with a reflux condenser and mechanical stirrer, place 121 g. (126-5 ml.) of dimethylaniline, 45 g. of 40 per cent, formaldehyde solution and 0 -5 g. of sulphanilic acid. Heat the mixture under reflux with vigorous stirring for 8 hours. No visible change in the reaction mixture occurs. After 8 hours, remove a test portion of the pale yellow emulsion with a pipette or dropper and allow it to cool. The oil should solidify completely and upon boiling it should not smell appreciably of dimethylaniline if this is not the case, heat for a longer period. When the reaction is complete, steam distil (Fig. II, 41, i) the mixture until no more formaldehyde and dimethylaniline passes over only a few drops of dimethylaniline should distil. As soon as the distillate is free from dimethylaniline, pour the residue into excess of cold water when the base immediately solidifies. Decant the water and wash the crystalline solid thoroughly with water to remove the residual formaldehyde. Finally melt the solid under water and allow it to solidify. A hard yellowish-white crystalline cake of crude base, m,p. 80-90°, is obtained in almost quantitative yield. RecrystaUise from 250 ml. of alcohol the recovery of pure pp -tetramethyldiaminodiphenylmethane, m.p. 89-90°, is about 90 per cent. [Pg.987]


See other pages where Yellowing mechanism is mentioned: [Pg.196]    [Pg.125]    [Pg.461]    [Pg.257]    [Pg.196]    [Pg.125]    [Pg.461]    [Pg.257]    [Pg.169]    [Pg.239]    [Pg.538]    [Pg.541]    [Pg.570]    [Pg.579]    [Pg.604]    [Pg.640]    [Pg.676]    [Pg.716]    [Pg.717]    [Pg.718]    [Pg.746]    [Pg.771]    [Pg.804]    [Pg.808]    [Pg.841]    [Pg.900]    [Pg.932]    [Pg.961]    [Pg.993]    [Pg.207]    [Pg.133]    [Pg.314]    [Pg.423]    [Pg.203]    [Pg.382]    [Pg.545]    [Pg.20]    [Pg.2]    [Pg.459]    [Pg.511]    [Pg.322]   


SEARCH



Mechanism of yellowing

© 2024 chempedia.info