Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Xanthine oxidase iron-sulfur centers

XOD is one of the most complex flavoproteins and is composed of two identical and catalytically independent subunits each subunit contains one molybdenium center, two iron sulfur centers, and flavine adenine dinucleotide. The enzyme activity is due to a complicated interaction of FAD, molybdenium, iron, and labile sulfur moieties at or near the active site [260], It can be used to detect xanthine and hypoxanthine by immobilizing xanthine oxidase on a glassy carbon paste electrode [261], The elements are based on the chronoamperometric monitoring of the current that occurs due to the oxidation of the hydrogen peroxide which liberates during the enzymatic reaction. The biosensor showed linear dependence in the concentration range between 5.0 X 10 7 and 4.0 X 10-5M for xanthine and 2.0 X 10 5 and 8.0 X 10 5M for hypoxanthine, respectively. The detection limit values were estimated as 1.0 X 10 7 M for xanthine and 5.3 X 10-6M for hypoxanthine, respectively. Li used DNA to embed xanthine oxidase and obtained the electrochemical response of FAD and molybdenum center of xanthine oxidase [262], Moreover, the enzyme keeps its native catalytic activity to hypoxanthine in the DNA film. So the biosensor for hypoxanthine can be based on... [Pg.591]

Barber, M. J., Siegel, L. M. Proton and electron affinities and magnetic interactions associated with the molybdenum flavin, and iron-sulfur centers of milk xanthine oxidase. In Flavins and flavoproteins (Massey, V., Williams, C. H. eds.) pp. 796-804, New York, Amsterdam, Oxford, Elsevier/North Holland 1982... [Pg.137]

Purine nucleotides are degraded by a pathway in which they lose their phosphate through the action of 5 -nucleotidase (Fig. 22-45). Adenylate yields adenosine, which is deaminated to inosine by adenosine deaminase, and inosine is hydrolyzed to hypoxanthine (its purine base) and D-ribose. Hypoxanthine is oxidized successively to xanthine and then uric acid by xanthine oxidase, a flavoenzyme with an atom of molybdenum and four iron-sulfur centers in its prosthetic group. Molecular oxygen is the electron acceptor in this complex reaction. [Pg.873]

It is obvious that x-ray cyrstallographic methods will be the final arbiter of the structural features of molybdoproteins, but until such structures are obtained, and even afterwards as far as dynamic features are concerned, spectroscopic methods must be used to gain insight into the nature of these catalysts. Electronic spectroscopy so far has been of little use here since molybdenum complexes in general appear to exhibit broad weak absorptions. In proteins these are always buried under absorptions from hemes, flavins, and iron-sulfur centers. Massey et al., (15) discovered that pyrazolo [3,4-d] pyrimidines will bind Mo (IV) in milk xanthine oxidase that had been reduced with xanthine... [Pg.391]

Xanthine Oxidase. This molybdoenzyme is readily available from cows milk in gram quantities (28) and is relatively stable, which accounts for the fact that it is by far the most intensively studied molybdoenzyme. Bray and Swann (5) have reviewed comprehensively the earlier literature, and recent papers by Olson et al. (20) summarize combined kinetic and thermodynamic approaches to the states of the prosthetic groups during catalysis. Two molybdenum, four iron-sulfur centers, and two FAD groups are present in each molecule. An important point raised by Edmondson, et al. (29) is that the rates of internal electron transfer among the prosthetic groups appear to be much more rapid than turnover. Olson et al., (20) deduced that the reduction potentials of the two processes Mo(VI) <— Mo(V) <— Mo(IV) were —60 and —31 mv, respectively, relative to the redox potential for one of the iron-sulfur centers (center II) in the molecule. Thus, at equilibrium one can never have more than a small fraction of molybdenum as... [Pg.393]

Xanthine oxidase catalyzes the oxidation of hypox-anthine and xanthine to uric acid. Xanthine oxidase is a complex metalloflavoprotein containing one molybdenum, one FAD and two iron-sulfur centers of the ferredoxine type in each of its two independent subunits. Usually, the enzyme is isolated from cow s milk. The enzyme is inhibited by allopurinol and related compounds. The production of uric acid from the substrate (xanthine) can be determined by measuring the change in optical density in the UV range. [Pg.97]

The reaction mechanism is incompletely understood. Molybdenum, an essential cofactor, is the initial acceptor of electrons during purine oxidation and undergoes reduction from Mo + to Mo" +. Deficiency of molybdenum can result in xanthinuria. The electrons from molybdenum are passed successively to the iron-sulfur center, to FAD, and finally to oxygen. The oxygen incorporated into xanthine and uric acid originates in water. Xanthine oxidase also yields the superoxide radical, O2, which is then converted to hydrogen peroxide by superoxide dismutase (Chapter 14). This may yield free radicals,... [Pg.630]

Paramagnetic centers are found in many specific enzymes and proteins that function in animal tissues and bacteria (oxygenases, sulfite or nitrite reductases, xanthine oxidase, nitrogenase, etc.) besides mitochondria and microsomes. The catalytic site can include Mo, Cu, Co, Ni, Mn, and other metal ions. Elowever heme- and iron-sulfur centers constitute the majority of the paramagnetic centers found outside the mitochondria. [Pg.928]

Molybdoenzymns At present, 6 oligomeric oxi-doreductases are known, which contain Mo as an essential constituent 1. Nitrogenase (see) 2. Nitrate reductase, EC 1.6.6.3 (see) 3. Xanthine oxidase, EC 1.2.3.2 (see), from animals and bacteria 4. Aldehyde oxidase, EC 1.2.3.1 from animal liver, which catalyses the reaction R-CHO + HjO R-COOH + 2H + 2e 5. Sulfite oxidase, EC 1.18.3.1 from mammalian and bird liver (Af, 114,000 2 subunits), which catalyses the reaction S03 + HjO-> SO/ + 2H + 2e this enzyme also contains a b5-like cytochrome and passes electrons directly to cytochrome c in the respiratory chain and 6. Formate dehydrogenase, EC 1.2.1.2, a membrane-bound protein from E. coli, containing one atom each of molybdenum and selenium, one heme group and nonheme iron-sulfur centers. It is NAD -dependent and catalyses the reaction HCOO + NAD CO2 -I- NADH. [Pg.411]

Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family Mechanistic implications. Biochemistry 38 14077-14087. [Pg.101]

A large number of studies devoted to metal-sulfur centers are motivated by the occurrence of such arrangements at the active site of various metalloenzymes [1-13]. Mononuclear complexes with Mo=0 func-tion(s) and possessing sulfur ligands in their coordination sphere have been extensively investigated since they can be seen as models of the active site of enzymes such as nitrate- and DM SO reductases or sulfite- and xanthine oxidases [1-4]. On the other hand, a large variety of mono-, di-, and polynuclear Mo—S centers have been synthesized in order to produce functional models of the Mo-nitrogenase since the exact nature (mono-, di- or polynuclear) of the metal center, where N2 interacts within the iron-molybdenum cofactor (FeMo—co) of the enzyme is still unknown [4-8]. [Pg.567]

It is usually believed that NO inhibits enzymes by reacting with heme or nonheme iron or copper or via the S-nitrosilation or oxidation of sulfhydryl groups, although precise mechanisms are not always evident. By the use of ESR spectroscopy, Ichimori et al. [76] has showed that NO reacts with the sulfur atom coordinated to the xanthine oxidase molybdenum center, converting xanthine oxidase into a desulfo-type enzyme. Similarly, Sommer et al. [79] proposed that nitric oxide and superoxide inhibited calcineurin, one of the major serine and threonine phosphatases, by oxidation of metal ions or thiols. [Pg.700]

The rationale for studies on flavin semiquinone metal interactions stems from the presence of flavin coenzymes which participate in electron transfer in a number of metalloflavoproteins. Iron-containing redox centers such as the heme and nonheme iron sulfur prosthetic groups (Fe2/S2, Fe+ZS, or the rubredoxin-type of iron center) constitute the more common type of metal donor-acceptor found in metalloflavoproteins, although molybdenum is encountered in the molybdenum hydroxylases (e.g. xanthine oxidase, aldehyde dehydrogenase). [Pg.118]

There is, however, more direct evidence for the presence of Mo (IV) in the cycle of xanthine oxidase. This evidence comes from the experiments of Massey and co-workers (24) who used alloxanthine (l) to trap the enzyme in its reduced state. A strong complex is formed between the reduced enzyme and alloxanthine, and excess alloxanthine and reductant can be removed. The enzyme is then reoxidized with Fe(CN)63", and two electrons per molybdenum center are found after the electrons required for the reoxidation of the iron-sulfur and flavin groupings are... [Pg.365]

This enzyme, as well as nicotinic acid hydroxylase was recently reported by Andreesan to be a selenoenzyme. The discovery of both these enzymes was based on the clever assumption that selenium might well be a component of multisubunit enzymes containing redox centers such as iron-sulfur, flavin, molybdenum, etc. When Clostridium acidiurici was cultured in media with supplemental selenium, an elevated activity of xanthine dehydrogenase was observed. The clostridial enzyme is comparable to mammalian xanthine oxidases in that it contains flavin adeninedinucleotide (FAD), molybdenum and nonheme iron. This enzyme functions in vivo under anaerobic conditions and appears to catalyze the reduction of uric acid to xanthine. Again it will be interesting to learn the form of selenium in this enzyme. [Pg.15]


See other pages where Xanthine oxidase iron-sulfur centers is mentioned: [Pg.449]    [Pg.462]    [Pg.466]    [Pg.455]    [Pg.458]    [Pg.65]    [Pg.5]    [Pg.74]    [Pg.574]    [Pg.48]    [Pg.48]    [Pg.699]    [Pg.389]    [Pg.43]    [Pg.103]    [Pg.389]    [Pg.567]    [Pg.262]    [Pg.21]    [Pg.3930]    [Pg.425]    [Pg.70]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Iron center

Iron-sulfur

Oxidases xanthine oxidase

Sulfur oxidases

Xanthin

Xanthine

Xanthins

© 2024 chempedia.info