Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Voltammetry working electrodes

Selective Electrochemical Reactions at Working Electrodes (Voltammetry and Amperometry). 968... [Pg.951]

Stripping voltammetry involves the pre-concentration of the analyte species at the electrode surface prior to the voltannnetric scan. The pre-concentration step is carried out under fixed potential control for a predetennined time, where the species of interest is accumulated at the surface of the working electrode at a rate dependent on the applied potential. The detemiination step leads to a current peak, the height and area of which is proportional to the concentration of the accumulated species and hence to the concentration in the bulk solution. The stripping step can involve a variety of potential wavefomis, from linear-potential scan to differential pulse or square-wave scan. Different types of stripping voltaimnetries exist, all of which coimnonly use mercury electrodes (dropping mercury electrodes (DMEs) or mercury film electrodes) [7, 17]. [Pg.1932]

In voltammetry the working electrode s surface area is significantly smaller than that used in coulometry. Consequently, very little analyte undergoes electrolysis, and the analyte s concentration in bulk solution remains essentially unchanged. [Pg.511]

In hydrodynamic voltammetry current is measured as a function of the potential applied to a solid working electrode. The same potential profiles used for polarography, such as a linear scan or a differential pulse, are used in hydrodynamic voltammetry. The resulting voltammograms are identical to those for polarography, except for the lack of current oscillations resulting from the growth of the mercury drops. Because hydrodynamic voltammetry is not limited to Hg electrodes, it is useful for the analysis of analytes that are reduced or oxidized at more positive potentials. [Pg.516]

Anodic stripping voltammetry consists of two steps (Figure 11.37). The first is a controlled potential electrolysis in which the working electrode, usually a hanging mercury drop or mercury film, is held at a cathodic potential sufficient to deposit the metal ion on the electrode. For example, with Cu + the deposition reaction is... [Pg.517]

This experiment introduces hydrodynamic voltammetry using a rotating working electrode. Its application for the quantitative analysis of K4Fe(CN)6 is demonstrated. [Pg.535]

Electrochemical Detectors Another common group of HPLC detectors are those based on electrochemical measurements such as amperometry, voltammetry, coulometry, and conductivity. Figure 12.29b, for example, shows an amperometric flow cell. Effluent from the column passes over the working electrode, which is held at a potential favorable for oxidizing or reducing the analytes. The potential is held constant relative to a downstream reference electrode, and the current flowing between the working and auxiliary electrodes is measured. Detection limits for amperometric electrochemical detection are 10 pg-1 ng of injected analyte. [Pg.585]

Differential-pulse voltammetry is an extremely useful technique for measuring trace levels of organic and inorganic species, hi differential-pulse voltammetry, fixed-magnitude pulses—superimposed on a linear potential ramp—are applied to the working electrode at a time just before the end of the drop (Figure 3-5). The current... [Pg.68]

Principles and Characteristics Voltammetric methods are electrochemical methods which comprise several current-measuring techniques involving reduction or oxidation at a metal-solution interface. Voltammetry consists of applying a variable potential difference between a reference electrode (e.g. Ag/AgCl) and a working electrode at which an electrochemical reaction is induced (Ox + ne ----> Red). Actually, the exper-... [Pg.669]

Principles and Characteristics Contrary to poten-tiometric methods that operate under null conditions, other electrochemical methods impose an external energy source on the sample to induce chemical reactions that would not otherwise occur spontaneously. It is thus possible to analyse ions and organic compounds that can either be reduced or oxidised electrochemi-cally. Polarography, which is a division of voltammetry, involves partial electrolysis of the analyte at the working electrode. [Pg.671]

Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE... Figure 2.15 Schematic representation of the equipment necessary to perform linear sweep voltammetry LSV) or cyclic voltammetry CV). WFG waveform generator, P potentiostat, CR chart recorder, EC electrochemical cell, WE working electrode, CE counter electrode, RE...
Most common reference electrodes are silver-silver chloride (SSC), and saturated calomel electrode (SSC, which contains mercury). The reference electrode should be placed near the working electrode so that the W-potential is accurately referred to the reference electrode. These reference electrodes contain concentrated NaCl or KC1 solution as the inner electrolyte to maintain a constant composition. Errors in electrode potentials are due to the loss of electrolytes or the plugging of the porous junction at the tip of the reference electrode. Most problems in practical voltammetry arise from poor reference electrodes. To work with non-aqueous solvents such as acetonitrile, dimethylsulfoxide, propylene carbonate, etc., the half-cell, Ag (s)/AgC104 (0.1M) in solvent//, is used. There are situations where a conventional reference electrode is not usable, then a silver wire can be used as a pseudo-reference electrode. [Pg.668]

The ohmic drop effect we are discussing deals only with the Ru portion ofthe cell resistance (Figure 1.5c). Indeed, the action of the potentiostat makes the working electrode potential independent not only of the possible shift of the counter electrode potential as the current varies, but also independent of the ohmic drop in the Rc portion of the cell resistance. In the case of cyclic voltammetry, the equation above becomes... [Pg.14]


See other pages where Voltammetry working electrodes is mentioned: [Pg.1926]    [Pg.509]    [Pg.538]    [Pg.49]    [Pg.49]    [Pg.322]    [Pg.104]    [Pg.591]    [Pg.28]    [Pg.62]    [Pg.72]    [Pg.109]    [Pg.1005]    [Pg.456]    [Pg.240]    [Pg.268]    [Pg.273]    [Pg.126]    [Pg.129]    [Pg.585]    [Pg.591]    [Pg.1005]    [Pg.312]    [Pg.380]    [Pg.670]    [Pg.203]    [Pg.368]    [Pg.351]    [Pg.78]    [Pg.59]    [Pg.26]    [Pg.469]    [Pg.143]    [Pg.467]    [Pg.343]    [Pg.133]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Cyclic voltammetry working electrode

Working electrode

Working electrode electrodes)

© 2024 chempedia.info